|
|
⇣
|
⇣
|
Evolution-Based Online Automated Machine Learning,
Cedric Kulbach, Jacob Montiel, Maroua Bahri, Marco Heyden, Albert Bifet,
PAKDD 2022, Chengdu, China
|
|
|
|
⇣
|
Challenges of Machine Learning for Data Streams in the Banking Industry,
Mariam Barry, Albert Bifet, Raja Chiky, Jacob Montiel, Vinh Thuy Tran,
BDA 2021
|
|
|
|
⇣
|
Kalman Filtering for Learning with Evolving Data Streams,
Giacomo Ziffer, Alessio Bernardo, Emanuele Della Valle, Albert Bifet,
IEEE BigData 2021
|
|
|
|
⇣
|
S2CE: a hybrid cloud and edge orchestrator for mining exascale distributed streams,
Nicolas Kourtellis, Herodotos Herodotou, Maciej Grzenda, Piotr Wawrzyniak, Albert Bifet,
DEBS 2021
|
|
|
|
⇣
|
Incremental k-Nearest Neighbors Using Reservoir Sampling for Data Streams,
Maroua Bahri, Albert Bifet,
DS 2021
|
|
|
|
⇣
|
Analyzing and Repairing Concept Drift Adaptation in Data Stream Classification,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Russel Pears, Mykola Pechenizkiy, Albert Bifet, Gustavo Olivares, Guy Coulson,
DSAA 2021
|
|
|
|
⇣
|
Fingerprinting Concepts in Data Streams with Supervised and Unsupervised Meta-Information,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet, Russel Pears,
ICDE 2021
|
|
|
|
⇣
|
Confident Interpretations of Black Box Classifiers,
Nedeljko Radulovic, Albert Bifet, Fabian Suchanek,
IJCNN 2021
|
|
|
|
⇣
|
Fast and lightweight binary and multi-branch Hoeffding Tree Regressors,
Saulo Martiello Mastelini, Jacob Montiel, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Andre De Carvalho,
ICDM 2021
|
|
|
|
⇣
|
FARF: A Fair and Adaptive Random Forests Classifier,
Wenbin Zhang, Albert Bifet, Xiangliang Zhang, Jeremy Weiss, Wolfgang Nejdl,
PAKDD 2021
|
|
|
|
⇣
|
Studying and Exploiting the Relationship Between Model Accuracy and Explanation Quality,
Yunzhe Jia, Eibe Frank, Bernhard Pfahringer, Albert Bifet, Nick Lim,
ECML/PKDD 2021
|
|
|
|
⇣
|
ORSUM 2021 - 4th Workshop on Online Recommender Systems and User Modeling,
João Vinagre, Alipio Mario Jorge, Marie Al Ghossein, Albert Bifet,
RecSys 2021
|
|
|
|
⇣
|
AI Transformation in the Public Sector: Ongoing Research,
Einav Peretz Andersson, Niklas Lavesson, Albert Bifet, Patrick Mikalef,
SAIS 2021
|
|
|
⇣
|
⇣
|
Efficient Batch-Incremental Classification Using UMAP for Evolving Data Streams,
Maroua Bahri, Bernhard Pfahringer, Albert Bifet, Silviu Maniu,
IDA 2020, Konstanz / Virtual, Germany
|
|
|
⇣
|
⇣
|
Compressed k-Nearest Neighbors Ensembles for Evolving Data Streams,
Maroua Bahri, Albert Bifet, Silviu Maniu, Rodrigo Fernandes De Mello, Nikolaos Tziortziotis,
ECAI 2020, Santiago de Compostella / Virtual, Spain
|
|
|
⇣
|
⇣
|
CS-ARF: Compressed Adaptive Random Forests for Evolving Data Stream Classification,
Maroua Bahri, Heitor Murilo Gomes, Albert Bifet, Silviu Maniu,
IJCNN 2020, Glasgow / Virtual, United Kingdom
|
|
|
⇣
|
⇣
|
Survey on Feature Transformation Techniques for Data Streams,
Maroua Bahri, Albert Bifet, Silviu Maniu, Heitor Murilo Gomes,
IJCAI 2020, Yokohama / Virtual, Japan
|
|
|
|
⇣
|
AutoML for Stream k-Nearest Neighbors Classification,
Maroua Bahri, Bruno Veloso, Albert Bifet, João Gama,
IEEE BigData 2020
|
|
|
|
⇣
|
C-SMOTE: Continuous Synthetic Minority Oversampling for Evolving Data Streams,
Alessio Bernardo, Heitor Murilo Gomes, Jacob Montiel, Bernhard Pfahringer, Albert Bifet, Emanuele Della Valle,
IEEE BigData 2020
|
|
|
|
⇣
|
Streaming Time Series Forecasting using Multi-Target Regression with Dynamic Ensemble Selection,
Dihia Boulegane, Albert Bifet, Haytham Elghazel, Giyyarpuram Madhusudan,
IEEE BigData 2020
|
|
|
|
⇣
|
Unsupervised Concept Drift Detection Using a Student-Teacher Approach,
Vitor Cerqueira, Heitor Murilo Gomes, Albert Bifet,
DS 2020
|
|
|
|
⇣
|
FEAT: A Fairness-Enhancing and Concept-Adapting Decision Tree Classifier,
Wenbin Zhang, Albert Bifet,
DS 2020
|
|
|
|
⇣
|
Improving parallel performance of ensemble learners for streaming data through data locality with mini-batching,
Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger,
HPCC/DSS/SmartCity 2020
|
|
|
|
⇣
|
Incremental Rebalancing Learning on Evolving Data Streams,
Alessio Bernardo, Emanuele Della Valle, Albert Bifet,
ICDM 2020
|
|
|
|
⇣
|
Fast Incremental Naïve Bayes with Kalman Filtering,
Giacomo Ziffer, Alessio Bernardo, Emanuele Della Valle, Albert Bifet,
ICDM 2020
|
|
|
|
⇣
|
On Ensemble Techniques for Data Stream Regression,
Heitor Murilo Gomes, Jacob Montiel, Saulo Martiello Mastelini, Bernhard Pfahringer, Albert Bifet,
IJCNN 2020
|
|
|
|
⇣
|
Performance measures for evolving predictions under delayed labelling classification,
Maciej Grzenda, Heitor Murilo Gomes, Albert Bifet,
IJCNN 2020
|
|
|
|
⇣
|
Randomizing the Self-Adjusting Memory for Enhanced Handling of Concept Drift,
Viktor Losing, Barbara Hammer, Heiko Wersing, Albert Bifet,
IJCNN 2020
|
|
|
|
⇣
|
Adaptive XGBoost for Evolving Data Streams,
Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, Albert Bifet,
IJCNN 2020
|
|
|
|
⇣
|
confStream: Automated Algorithm Selection and Configuration of Stream Clustering Algorithms,
Matthias Carnein, Heike Trautmann, Albert Bifet, Bernhard Pfahringer,
LION 2020
|
|
|
|
⇣
|
Challenges of Stream Learning for Predictive Maintenance in the Railway Sector,
Minh Huong Le Nguyen, Fabien Turgis, Pierre Emmanuel Fayemi, Albert Bifet,
IoT Streams/ITEM@PKDD/ECML 2020
|
|
|
|
⇣
|
ORSUM - Workshop on Online Recommender Systems and User Modeling,
João Vinagre, Alipio Mario Jorge, Marie Al Ghossein, Albert Bifet,
RecSys 2020
|
|
|
⇣
|
⇣
|
Network of Experts: Learning from Evolving Data Streams Through Network-Based Ensembles,
Heitor Murilo Gomes, Albert Bifet ■, Philippe Fournier Viger, Jones Granatyr, Jesse Read,
ICONIP 2019
|
|
|
⇣
|
⇣
|
Adaptive Algorithms for Estimating Betweenness and k-path Centralities,
Mostafa Haghir Chehreghani, Albert Bifet ■, Talel Abdessalem,
CIKM 2019, Beijing, France
|
|
|
⇣
|
⇣
|
Continuous Analytics of Web Streams,
Riccardo Tommasini, Robin Keskisarkka, Jean Paul Calbimonte, Eva Blomqvist, Emanuele Della Valle, Albert Bifet ■,
WWW 2019, San Francisco, United States
|
|
|
⇣
|
⇣
|
ORSUM 2019 2nd workshop on online recommender systems and user modeling,
João Vinagre, Alipio Mario Jorge, Albert Bifet ■, Marie Al Ghossein,
RecSys 2019, Copenhagen, France
|
|
|
⇣
|
|
Metropolis-Hastings Algorithms for Estimating Betweenness Centrality Talel Abdessalem,
Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet ■,
22nd International Conference on Extending Database Technology EDBT 2019 2019, Lisbon, Portugal
|
|
|
⇣
|
⇣
|
Adaptive Random Forests with Resampling for Imbalanced data Streams,
Luis Eduardo Boiko Ferreira, Heitor Murilo Gomes, Albert Bifet ■, Luiz Oliveira,
IJCNN 2019, Budapest, France
|
|
|
|
⇣
|
Arbitrated Dynamic Ensemble with Abstaining for Time-Series Forecasting on Data Streams,
Dihia Boulegane, Albert Bifet ■, Giyyarpuram Madhusudan,
IEEE BigData 2019
|
|
|
|
⇣
|
Real-Time Machine Learning Competition on Data Streams at the IEEE Big Data 2019,
Dihia Boulegane, Nedeljko Radulovic, Albert Bifet ■, Ghislain Fievet, Jimin Sohn, Yeonwoo Nam, Seojeong Yu, Dong Wan Choi,
IEEE BigData 2019
|
|
|
|
⇣
|
Feature Scoring using Tree-Based Ensembles for Evolving Data Streams,
Heitor Murilo Gomes, Rodrigo Fernandes De Mello, Bernhard Pfahringer, Albert Bifet ■,
IEEE BigData 2019
|
|
|
|
⇣
|
Semi-supervised Learning over Streaming Data using MOA,
Minh Huong Le Nguyen, Heitor Murilo Gomes, Albert Bifet ■,
IEEE BigData 2019
|
|
|
|
⇣
|
Metropolis-Hastings Algorithms for Estimating Betweenness Centrality,
Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet ■,
EDBT 2019
|
|
|
|
⇣
|
Recent trends in streaming data analysis, concept drift and analysis of dynamic data sets,
Albert Bifet ■, Barbara Hammer, Frank Michael Schleif,
ESANN 2019
|
|
|
|
⇣
|
Streaming Random Patches for Evolving Data Stream Classification,
Heitor Murilo Gomes, Jesse Read, Albert Bifet ■,
ICDM 2019
|
|
|
|
⇣
|
IDSA-IoT: An Intrusion Detection System Architecture for IoT Networks,
Guilherme Weigert Cassales, Hermes Senger, Elaine Ribeiro De Faria, Albert Bifet ■,
ISCC 2019
|
|
|
|
⇣
|
Towards Automated Configuration of Stream Clustering Algorithms,
Matthias Carnein, Heike Trautmann, Albert Bifet ■, Bernhard Pfahringer,
PKDD/ECML Workshops 2019
|
|
|
⇣
|
⇣
|
DyBED: An Efficient Algorithm for Updating Betweenness Centrality in Directed Dynamic Graphs,
Mostafa Haghir Chehreghani, Albert Bifet ■, Talel Abdessalem,
IEEE BigData 2018, Seattle, United States
|
|
|
⇣
|
⇣
|
An In-depth Comparison of Group Betweenness Centrality Estimation Algorithms,
Mostafa Haghir Chehreghani, Albert Bifet ■, Talel Abdessalem,
IEEE BigData 2018, Seattle, United States
|
|
|
⇣
|
⇣
|
Unsupervised real-time detection of BGP anomalies leveraging high-rate and fine-grained telemetry data,
Andrian Putina ■, Steven Barth, Albert Bifet ■, Drew Pletcher, Cristina Precup, Patrice Nivaggioli, Dario Rossi ■,
INFOCOM Workshops 2018, Honolulu, United States
|
|
|
⇣
|
⇣
|
Adaptive random forests for data stream regression,
Heitor Murilo Gomes, Jean Paul Barddal, Luis Eduardo Boiko Ferreira, Albert Bifet ■,
ESANN 2018, Bruges, Belgium
|
|
|
⇣
|
⇣
|
Efficient Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs,
Mostafa Haghir Chehreghani, Albert Bifet ■, Talel Abdessalem,
PAKDD 2018, Melbourne, Australia
|
|
|
⇣
|
⇣
|
Scalable Model-Based Cascaded Imputation of Missing Data,
Jacob Montiel, Jesse Read, Albert Bifet ■, Talel Abdessalem,
PAKDD 2018, Melbourne, Australia
|
|
|
⇣
|
⇣
|
Ubiquitous Artificial Intelligence and Dynamic Data Streams,
Albert Bifet ■, Jesse Read,
DEBS 2018, Hamilton, New Zealand
|
|
|
⇣
|
⇣
|
Telemetry-based stream-learning of BGP anomalies,
Andrian Putina ■, Dario Rossi ■, Albert Bifet ■, Steven Barth, Drew Pletcher, Cristina Precup, Patrice Nivaggioli,
Big-DAMA@SIGCOMM 2018, Budapest, Hungary
|
|
|
⇣
|
⇣
|
EXAD: A System for Explainable Anomaly Detection on Big Data Traces,
Fei Song, Yanlei Diao, Jesse Read, Arnaud Stiegler, Albert Bifet ■,
ICDM Workshops 2018, Singapore, Singapore
|
|
|
|
⇣
|
A Sketch-Based Naive Bayes Algorithms for Evolving Data Streams,
Maroua Bahri, Silviu Maniu, Albert Bifet ■,
IEEE BigData 2018
|
|
|
|
⇣
|
Learning Fast and Slow: A Unified Batch/Stream Framework,
Jacob Montiel, Albert Bifet ■, Viktor Losing, Jesse Read, Talel Abdessalem,
IEEE BigData 2018
|
|
|
|
⇣
|
Bitcoin Volatility Forecasting with a Glimpse into Buy and Sell Orders,
Tian Guo, Albert Bifet ■, Nino Antulov Fantulin,
ICDM 2018
|
|
|
⇣
|
⇣
|
Droplet Ensemble Learning on Drifting Data Streams,
Pierre Xavier Loeffel, Albert Bifet ■, Christophe Marsala, Marcin Detyniecki,
IDA 2017, Londres, United Kingdom
|
|
|
⇣
|
|
Internet of Things (IoT) Analytics,
Albert Bifet ■,
The 16th International Conference on Artificial Intelligence and Soft Computing ICAISC 2017 2017, Zakopane, Poland
|
|
|
⇣
|
⇣
|
Low-latency multi-threaded ensemble learning for dynamic big data streams,
Diego Marron, Eduard Ayguade, Jose Herrero, Jesse Read, Albert Bifet ■,
IEEE BigData 2017, Boston, France
|
|
|
|
⇣
|
Predicting over-indebtedness on batch and streaming data,
Jacob Montiel, Albert Bifet ■, Talel Abdessalem,
IEEE BigData 2017
|
|
|
|
⇣
|
Extremely Fast Decision Tree Mining for Evolving Data Streams,
Albert Bifet ■, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer,
KDD 2017
|
|
|
|
⇣
|
Inferring Demographics and Social Networks of Mobile Device Users on Campus From AP-Trajectories,
Pinghui Wang, Feiyang Sun, Di Wang, Jing Tao, Xiaohong Guan, Albert Bifet ■,
WWW 2017
|
|
|
⇣
|
|
Massive Online Analytics for the Internet of Things (IoT),
Albert Bifet,
The 8th Asian Conference on Machine Learning 2016, Hamilton, New Zealand
|
|
|
|
⇣
|
Echo State Hoeffding Tree Learning,
Diego Marron, Jesse Read, Albert Bifet, Talel Abdessalem, Eduard Ayguade, Jose Herrero,
ACML 2016
|
|
|
|
⇣
|
VHT: Vertical hoeffding tree,
Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet, Arinto Murdopo,
IEEE BigData 2016
|
|
|
|
⇣
|
IoT Big Data Stream Mining,
Gianmarco De Francisci Morales, Albert Bifet, Latifur Khan, João Gama, Wei Fan,
KDD 2016
|
|
|
|
⇣
|
On Dynamic Feature Weighting for Feature Drifting Data Streams,
Jean Paul Barddal, Heitor Murilo Gomes, Fabricio Enembreck, Bernhard Pfahringer, Albert Bifet,
ECML/PKDD 2016
|
|
|
|
⇣
|
Deferral classification of evolving temporal dependent data streams,
Michael Mayo, Albert Bifet,
SAC 2016
|
|
|
|
⇣
|
Analyzing Big Data Streams with Apache SAMOA,
Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet,
MSM@WWW,MUSE@PKDD/ECML 2016
|
|
|
⇣
|
⇣
|
StreamDM: Advanced Data Mining in Spark Streaming,
Albert Bifet, Silviu Maniu, Jianfeng Qian, Guangjian Tian, Cheng He, Wei Fan,
ICDM Workshops 2015, Atlantic City, NJ, United States
|
|
|
|
⇣
|
Use of ensembles of Fourier spectra in capturing recurrent concepts in data streams,
Sripirakas Sakthithasan, Russel Pears, Albert Bifet, Bernhard Pfahringer,
IJCNN 2015
|
|
|
|
⇣
|
Efficient Online Evaluation of Big Data Stream Classifiers,
Albert Bifet, Gianmarco De Francisci Morales, Jesse Read, Geoff Holmes, Bernhard Pfahringer,
KDD 2015
|
|
|
|
⇣
|
Preface,
Wei Fan, Albert Bifet, Qiang Yang, Philip Yu,
BigMine 2015
|
|
|
|
⇣
|
Drift Detection Using Stream Volatility,
David Tse Jung Huang, Yun Sing Koh, Gillian Dobbie, Albert Bifet,
ECML/PKDD 2015
|
|
|
|
⇣
|
Deep learning in partially-labeled data streams,
Jesse Read, Fernando Perez Cruz, Albert Bifet,
SAC 2015
|
|
|
⇣
|
|
Change detection in categorical evolving data streams Détection des changement dans des flots de données qualitatives,
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet,
29th Annual ACM Symposium on Applied Computing (SAC) 2014, Gyeongju, Korea, Republic of
|
|
|
⇣
|
|
Détection de changements dans des flots de données qualitatives Change detection in categorical evolving data streams,
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet,
14e Journées Internationales Francophones sur l'Extraction et la Gestion des Connaissances (EGC) 2014, Rennes, France
|
|
|
|
⇣
|
Distributed Adaptive Model Rules for mining big data streams,
Anh Thu Vu, Gianmarco De Francisci Morales, João Gama, Albert Bifet,
IEEE BigData 2014
|
|
|
|
⇣
|
Random Forests of Very Fast Decision Trees on GPU for Mining Evolving Big Data Streams,
Diego Marron, Albert Bifet, Gianmarco De Francisci Morales,
ECAI 2014
|
|
|
|
⇣
|
Détection de changements dans des flots de données qualitatives,
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet,
EGC 2014
|
|
|
|
⇣
|
Big Data Stream Learning with SAMOA,
Albert Bifet, Gianmarco De Francisci Morales,
ICDM Workshops 2014
|
|
|
|
⇣
|
Incremental Ensemble Classifier Addressing Non-stationary Fast Data Streams,
Brandon Parker, Latifur Khan, Albert Bifet,
ICDM Workshops 2014
|
|
|
|
⇣
|
Multi-label Classification with Meta-Labels,
Jesse Read, Antti Puurula, Albert Bifet,
ICDM 2014
|
|
|
|
⇣
|
Change detection in categorical evolving data streams,
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet,
SAC 2014
|
|
|
⇣
|
|
Clustering based active learning for evolving data streams Apprentissage actif sur flux des données basé sur clustering,
Dino Ienco, Albert Bifet, I. Zliobaite, B. Pfahringer,
Discovery Science 2013, Singapour, Singapore
|
|
|
|
⇣
|
Clustering Based Active Learning for Evolving Data Streams,
Dino Ienco, Albert Bifet, Indre Zliobaite, Bernhard Pfahringer,
Discovery Science 2013
|
|
|
|
⇣
|
CD-MOA: Change Detection Framework for Massive Online Analysis,
Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes, Indre Zliobaite,
IDA 2013
|
|
|
|
⇣
|
STRIP: stream learning of influence probabilities,
Konstantin Kutzkov, Albert Bifet, Francesco Bonchi, Aristides Gionis,
KDD 2013
|
|
|
|
⇣
|
Pitfalls in Benchmarking Data Stream Classification and How to Avoid Them,
Albert Bifet, Jesse Read, Indre Zliobaite, Bernhard Pfahringer, Geoff Holmes,
ECML/PKDD 2013
|
|
|
|
⇣
|
Efficient data stream classification via probabilistic adaptive windows,
Albert Bifet, Bernhard Pfahringer, Jesse Read, Geoff Holmes,
SAC 2013
|
|
|
|
⇣
|
Stream Data Mining Using the MOA Framework,
Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read,
DASFAA 2012
|
|
|
|
⇣
|
Batch-Incremental versus Instance-Incremental Learning in Dynamic and Evolving Data,
Jesse Read, Albert Bifet, Bernhard Pfahringer, Geoff Holmes,
IDA 2012
|
|
|
|
⇣
|
MOA-TweetReader: Real-Time Analysis in Twitter Streaming Data,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer,
Discovery Science 2011
|
|
|
|
⇣
|
Online Evaluation of Email Streaming Classifiers Using GNUsmail,
Jose Carmona Cejudo, Manuel Baena Garcia, Jose Del Campo Avila, Albert Bifet, João Gama, Rafael Morales Bueno,
IDA 2011
|
|
|
|
⇣
|
Mining frequent closed graphs on evolving data streams,
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Ricard Gavalda,
KDD 2011
|
|
|
|
⇣
|
An effective evaluation measure for clustering on evolving data streams,
Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
KDD 2011
|
|
|
|
⇣
|
MOA: A Real-Time Analytics Open Source Framework,
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl,
ECML/PKDD 2011
|
|
|
|
⇣
|
Active Learning with Evolving Streaming Data,
Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, Geoff Holmes,
ECML/PKDD 2011
|
|
|
|
⇣
|
Detecting Sentiment Change in Twitter Streaming Data,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Ricard Gavalda,
WAPA 2011
|
|
|
|
⇣
|
Using GNUsmail to Compare Data Stream Mining Methods for On-line Email Classification,
Jose Carmona Cejudo, Manuel Baena Garcia, Rafael Morales Bueno, João Gama, Albert Bifet,
WAPA 2011
|
|
|
|
⇣
|
Streaming Multi-label Classification,
Jesse Read, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
WAPA 2011
|
|
|
|
⇣
|
MOA Concept Drift Active Learning Strategies for Streaming Data,
Indre Zliobaite, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
WAPA 2011
|
|
|
|
⇣
|
Sentiment Knowledge Discovery in Twitter Streaming Data,
Albert Bifet, Eibe Frank,
Discovery Science 2010
|
|
|
|
⇣
|
GNUsmail: Open Framework for On-line Email Classification,
Jose Carmona Cejudo, Manuel Baena Garcia, Jose Del Campo Avila, Rafael Morales Bueno, Albert Bifet,
ECAI 2010
|
|
|
|
⇣
|
Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA,
Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
ICDM Workshops 2010
|
|
|
|
⇣
|
Fast Perceptron Decision Tree Learning from Evolving Data Streams,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Eibe Frank,
PAKDD 2010
|
|
|
|
⇣
|
Leveraging Bagging for Evolving Data Streams,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer,
ECML/PKDD 2010
|
|
|
|
⇣
|
Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking,
Albert Bifet, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
ACML 2010
|
|
|
|
⇣
|
MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering,
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl,
WAPA 2010
|
|
|
|
⇣
|
Improving Adaptive Bagging Methods for Evolving Data Streams,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Ricard Gavalda,
ACML 2009
|
|
|
|
⇣
|
Adaptive Learning from Evolving Data Streams,
Albert Bifet, Ricard Gavalda,
IDA 2009
|
|
|
|
⇣
|
New ensemble methods for evolving data streams,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Ricard Gavalda,
KDD 2009
|
|
|
|
⇣
|
Adaptive XML Tree Classification on Evolving Data Streams,
Albert Bifet, Ricard Gavalda,
ECML/PKDD 2009
|
|
|
|
⇣
|
Mining Implications from Lattices of Closed Trees,
Jose Balcazar, Albert Bifet, Antoni Lozano,
EGC 2008
|
|
|
|
⇣
|
Mining adaptively frequent closed unlabeled rooted trees in data streams,
Albert Bifet, Ricard Gavalda,
KDD 2008
|
|
|
|
⇣
|
Subtree Testing and Closed Tree Mining Through Natural Representations,
Jose Balcazar, Albert Bifet, Antoni Lozano,
DEXA Workshops 2007
|
|
|
|
⇣
|
Mining Frequent Closed Unordered Trees Through Natural Representations,
Jose Balcazar, Albert Bifet, Antoni Lozano,
ICCS 2007
|
|
|
|
⇣
|
Learning from Time-Changing Data with Adaptive Windowing,
Albert Bifet, Ricard Gavalda,
SDM 2007
|
|
|
|
⇣
|
Kalman Filters and Adaptive Windows for Learning in Data Streams,
Albert Bifet, Ricard Gavalda,
Discovery Science 2006
|
|
|
|
⇣
|
An Analysis of Factors Used in Search Engine Ranking,
Albert Bifet, Carlos Castillo, Paul Alexandru Chirita, Ingmar Weber,
AIRWeb 2005
|
|
|
|
⇣
|
An eager splitting strategy for online decision trees in ensembles,
Chaitanya Manapragada, Heitor Murilo Gomes, Mahsa Salehi, Albert Bifet, Geoffrey Webb,
Data Min. Knowl. Discov. 2022
|
|
|
|
⇣
|
TA4L: Efficient temporal abstraction of multivariate time series,
Natalia Mordvanyuk, Beatriz López, Albert Bifet,
Knowl. Based Syst. 2022
|
|
|
⇣
|
⇣
|
Data stream analysis: Foundations, major tasks and tools,
Maroua Bahri, Albert Bifet, João Gama, Heitor Murilo Gomes, Silviu Maniu,
WIREs Data Mining and Knowledge Discovery 2021
|
|
|
|
⇣
|
Recurring concept memory management in data streams: exploiting data stream concept evolution to improve performance and transparency,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Russel Pears, Mykola Pechenizkiy, Albert Bifet,
Data Min. Knowl. Discov. 2021
|
|
|
|
⇣
|
CURIE: a cellular automaton for concept drift detection,
Jesus Lobo, Javier Del Ser, Eneko Osaba, Albert Bifet, Francisco Herrera,
Data Min. Knowl. Discov. 2021
|
|
|
|
⇣
|
Binding data mining and expert knowledge for one-day-ahead prediction of hourly global solar radiation,
Jose Del Campo Avila, Abdelatif Takilalte, Albert Bifet, Llanos Mora López,
Expert Syst. Appl. 2021
|
|
|
|
⇣
|
vertTIRP: Robust and efficient vertical frequent time interval-related pattern mining,
Natalia Mordvanyuk, Beatriz López, Albert Bifet,
Expert Syst. Appl. 2021
|
|
|
|
⇣
|
Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs,
Mostafa Haghir Chehreghani, Albert Bifet, Talel Abdessalem,
Fundam. Informaticae 2021
|
|
|
|
⇣
|
Energy modeling of Hoeffding tree ensembles,
Eva Garcia Martin, Albert Bifet, Niklas Lavesson,
Intell. Data Anal. 2021
|
|
|
|
⇣
|
Improving the performance of bagging ensembles for data streams through mini-batching,
Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger,
Inf. Sci. 2021
|
|
|
|
⇣
|
River: machine learning for streaming data in Python,
Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse Read, Talel Abdessalem, Albert Bifet,
J. Mach. Learn. Res. 2021
|
|
|
|
⇣
|
Learning from evolving data streams through ensembles of random patches,
Heitor Murilo Gomes, Jesse Read, Albert Bifet, Robert Durrant,
Knowl. Inf. Syst. 2021
|
|
|
⇣
|
⇣
|
Spiking Neural Networks and online learning: An overview and perspectives,
Jesus Lobo, Javier Del Ser, Albert Bifet, Nikola Kasabov,
Neural Networks 2020
|
|
|
|
⇣
|
IoT data stream analytics,
Albert Bifet, João Gama,
Ann. des Télécommunications 2020
|
|
|
|
⇣
|
Delayed labelling evaluation for data streams,
Maciej Grzenda, Heitor Murilo Gomes, Albert Bifet,
Data Min. Knowl. Discov. 2020
|
|
|
|
⇣
|
Fifth special issue on knowledge discovery and business intelligence,
Paulo Cortez, Albert Bifet,
Expert Syst. J. Knowl. Eng. 2020
|
|
|
|
⇣
|
Sampling informative patterns from large single networks,
Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet, Meriem Bouzbila,
Future Gener. Comput. Syst. 2020
|
|
|
|
⇣
|
Discriminative Streaming Network Embedding,
Yiyan Qi, Jiefeng Cheng, Xiaojun Chen, Reynold Cheng, Albert Bifet, Pinghui Wang,
Knowl. Based Syst. 2020
|
|
|
|
⇣
|
Exploiting the stimuli encoding scheme of evolving Spiking Neural Networks for stream learning,
Jesus Lobo, Izaskun Oregi, Albert Bifet, Javier Del Ser,
Neural Networks 2020
|
|
|
⇣
|
⇣
|
Recurring concept meta-learning for evolving data streams,
Robert Anderson, Yun Sing Koh, Gillian Dobbie, Albert Bifet ■,
Expert Systems with Applications 2019
|
|
|
⇣
|
|
Machine learning for streaming data,
Heitor Murilo Gomes, Jesse Read, Albert Bifet ■, Jean Paul Barddal, João Gama,
SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining 2019
|
|
|
⇣
|
⇣
|
Boosting decision stumps for dynamic feature selection on data streams,
Jean Paul Barddal, Fabricio Enembreck, Heitor Murilo Gomes, Albert Bifet ■, Bernhard Pfahringer,
Information Systems 2019
|
|
|
⇣
|
⇣
|
Efficient frequent subgraph mining on large streaming graphs,
Abhik Ray, Lawrence Holder, Albert Bifet ■,
Intelligent Data Analysis 2019
|
|
|
⇣
|
⇣
|
Measuring the Shattering coefficient of Decision Tree models,
Rodrigo Fernandes De Mello, Chaitanya Manapragada, Albert Bifet ■,
Expert Systems with Applications 2019
|
|
|
⇣
|
⇣
|
On learning guarantees to unsupervised concept drift detection on data streams,
Rodrigo Fernandes De Mello, Yule Vaz, Carlos Henrique Grossi Ferreira, Albert Bifet ■,
Expert Systems with Applications 2019
|
|
|
⇣
|
⇣
|
Merit-guided dynamic feature selection filter for data streams,
Jean Paul Barddal, Fabricio Enembreck, Heitor Murilo Gomes, Albert Bifet ■, Bernhard Pfahringer,
Expert Syst. Appl. 2019
|
|
|
|
⇣
|
Introduction to the special issue on Big Data, IoT Streams and Heterogeneous Source Mining,
Jesse Read, Albert Bifet ■, Wei Fan, Qiang Yang, Philip Yu,
Int. J. Data Sci. Anal. 2019
|
|
|
|
⇣
|
Correction to: Adaptive random forests for evolving data stream classification,
Heitor Murilo Gomes, Albert Bifet ■, Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bernhard Pfahringer, Geoff Holmes, Talel Abdessalem,
Mach. Learn. 2019
|
|
|
|
⇣
|
Machine learning for streaming data: state of the art, challenges, and opportunities,
Heitor Murilo Gomes, Jesse Read, Albert Bifet ■, Jean Paul Barddal, João Gama,
SIGKDD Explor. 2019
|
|
|
⇣
|
⇣
|
Scikit-Multiflow: A Multi-output Streaming Framework,
Jacob Montiel, Jesse Read, Albert Bifet ■, Talel Abdessalem,
Journal of Machine Learning Research 2018
|
|
|
⇣
|
⇣
|
Discriminative Distance-Based Network Indices with Application to Link Prediction,
Mostafa Haghir Chehreghani, Albert Bifet ■, Talel Abdessalem,
The Computer Journal 2018
|
|
|
|
⇣
|
Predicting attributes and friends of mobile users from AP-Trajectories,
Pinghui Wang, Feiyang Sun, Di Wang, Jing Tao, Xiaohong Guan, Albert Bifet ■,
Inf. Sci. 2018
|
|
|
⇣
|
⇣
|
Adaptive random forests for evolving data stream classification,
Heitor Murilo Gomes, Albert Bifet ■, Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bernhard Pfahringer, Geoff Holmes, Talel Abdessalem,
Machine Learning 2017
|
|
|
⇣
|
⇣
|
Data stream classification using random feature functions and novel method combinations,
Diego Marron, Jesse Read, Albert Bifet ■, Nacho Navarro,
Journal of Systems and Software 2017
|
|
|
⇣
|
⇣
|
A Survey on Ensemble Learning for Data Stream Classification,
Heitor Murilo Gomes, Jean Paul Barddal, Fabricio Enembreck, Albert Bifet ■,
ACM Computing Surveys 2017
|
|
|
|
⇣
|
A streaming flow-based technique for traffic classification applied to 12 + 1 years of Internet traffic,
Valentin Carela Español, Pere Barlet Ros, Albert Bifet, Kensuke Fukuda,
Telecommun. Syst. 2016
|
|
|
|
⇣
|
Adaptive Model Rules From High-Speed Data Streams,
João Duarte, João Gama, Albert Bifet,
ACM Trans. Knowl. Discov. Data 2016
|
|
|
|
⇣
|
An efficient closed frequent itemset miner for the MOA stream mining system,
Massimo Quadrana, Albert Bifet, Ricard Gavalda,
AI Commun. 2015
|
|
|
|
⇣
|
SAMOA: scalable advanced massive online analysis,
Gianmarco De Francisci Morales, Albert Bifet,
J. Mach. Learn. Res. 2015
|
|
|
|
⇣
|
Evaluation methods and decision theory for classification of streaming data with temporal dependence,
Indre Zliobaite, Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes,
Mach. Learn. 2015
|
|
|
|
⇣
|
A survey on concept drift adaptation,
João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, Abdelhamid Bouchachia,
ACM Comput. Surv. 2014
|
|
|
|
⇣
|
Active Learning With Drifting Streaming Data,
Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, Geoffrey Holmes,
IEEE Trans. Neural Networks Learn. Syst. 2014
|
|
|
|
⇣
|
Scalable and efficient multi-label classification for evolving data streams,
Jesse Read, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
Mach. Learn. 2012
|
|
|
|
⇣
|
Mining big data: current status, and forecast to the future,
Wei Fan, Albert Bifet,
SIGKDD Explor. 2012
|
|
|
|
⇣
|
Next challenges for adaptive learning systems,
Indre Zliobaite, Albert Bifet, Mohamed Medhat Gaber, Bogdan Gabrys, João Gama, Leandro Minku, Katarzyna Musial,
SIGKDD Explor. 2012
|
|
|
|
⇣
|
Ensembles of Restricted Hoeffding Trees,
Albert Bifet, Eibe Frank, Geoff Holmes, Bernhard Pfahringer,
ACM Trans. Intell. Syst. Technol. 2012
|
|
|
|
⇣
|
Mining frequent closed trees in evolving data streams,
Albert Bifet, Ricard Gavalda,
Intell. Data Anal. 2011
|
|
|
|
⇣
|
MOA: Massive Online Analysis,
Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer,
J. Mach. Learn. Res. 2010
|
|
|
|
⇣
|
Mining frequent closed rooted trees,
Jose Balcazar, Albert Bifet, Antoni Lozano,
Mach. Learn. 2010
|