People


Albert Bifet

Albert Bifet
Institution: 
Office: 
48
Groups: 
Former member of the LINCS

Articles

Evaluation for Regression Analyses on Evolving Data Streams,
Yibin Sun, Heitor Murilo Gomes, Bernhard Pfahringer, Albert Bifet,
CoRR 2025
CapyMOA: Efficient Machine Learning for Data Streams in Python,
Heitor Murilo Gomes, Anton Lee, Nuwan Gunasekara, Yibin Sun, Guilherme Weigert Cassales, Justin Liu, Marco Heyden, Vitor Cerqueira, Maroua Bahri, Yun Sing Koh, Bernhard Pfahringer, Albert Bifet,
CoRR 2025
ASML: A Scalable and Efficient AutoML Solution for Data Streams,
Nilesh Verma, Albert Bifet, Bernhard Pfahringer, Maroua Bahri,
AutoML 2024, Paris, France
A Probabilistic Framework for Adapting to Changing and Recurring Concepts in Data Streams,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet,
CoRR 2024, Shenzhen, China
Mini-batching with Fused Training and Testing for Data Streams Processing on the Edge,
Reginaldo Luna, Guilherme Weigert Cassales, Bernhard Pfahringer, Albert Bifet, Heitor Murilo Gomes, Hermes Senger,
CF 2024
Online Isolation Forest,
Filippo Leveni, Guilherme Weigert Cassales, Bernhard Pfahringer, Albert Bifet, Giacomo Boracchi,
ICML 2024
Recurrent Concept Drifts on Data Streams,
Nuwan Gunasekara, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet, Yun Sing Koh,
IJCAI 2024
Time-Evolving Data Science and Artificial Intelligence for Advanced Open Environmental Science (TAIAO) Programme,
Yun Sing Koh, Albert Bifet, Karin Bryan, Guilherme Weigert Cassales, Olivier Graffeuille, Nick Jin Sean Lim, Phil Mourot, Ding Ning, Bernhard Pfahringer, Varvara Vetrova, Heitor Murilo Gomes,
IJCAI 2024
Adaptive Prediction Interval for Data Stream Regression,
Yibin Sun, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet,
PAKDD 2024
Real-Time Energy Pricing in New Zealand: An Evolving Stream Analysis,
Yibin Sun, Heitor Murilo Gomes, Bernhard Pfahringer, Albert Bifet,
PRICAI 2024
A Retrospective of the Tutorial on Opportunities and Challenges of Online Deep Learning,
Cedric Kulbach, Lucas Cazzonelli, Hoang Anh Ngo, Minh Huong Le Nguyen, Albert Bifet,
CoRR 2024
ORSUM 2023 - 6th Workshop on Online Recommender Systems and User Modeling,
João Vinagre, Marie Al Ghossein, Ladislav Peska, Alipio Mario Jorge, Albert Bifet,
RecSys 2023, Singapore, Singapore
Survey on Online Streaming Continual Learning,
Nuwan Gunasekara, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet,
IJCAI 2023, Macao, China
FG\(²\)AN: Fairness-Aware Graph Generative Adversarial Networks,
Zichong Wang, Charles Wallace, Albert Bifet, Xin Yao, Wenbin Zhang,
Machine Learning and Knowledge Discovery in Databases: Research Track - European Conference, ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part II 2023, Turin, Italy
FALL: A Modular Adaptive Learning Platform for Streaming Data,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet,
ICDE 2023, California, United States
StreamMLOps: Operationalizing Online Learning for Big Data Streaming & Real-Time Applications,
Mariam Barry, Jacob Montiel, Albert Bifet, Sameer Wadkar, Nikolay Manchev, Max Halford, Raja Chiky, Saad El Jaouhari, Katherine B. Shakman, Joudi Al Fehaily, Fabrice Le Deit, Vinh-Thuy Tran, Eric Guerizec,
39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023 2023, California, United States
Preventing Discriminatory Decision-making in Evolving Data Streams,
Zichong Wang, Nripsuta Saxena, Tongjia Yu, Sneha Karki, Tyler Zetty, Israat Haque, Shan Zhou, Dukka Kc, Ian Stockwell, Xuyu Wang, Albert Bifet, Wenbin Zhang,
FAccT 2023, Chicago, United States
Look At Me, No Replay! SurpriseNet: Anomaly Detection Inspired Class Incremental Learning,
Anton Lee, Yaqian Zhang, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer,
CIKM 2023, Birmingham (UK), United Kingdom
Choosing the Right Time to Learn Evolving Data Streams,
Alessio Bernardo, Emanuele Della Valle, Albert Bifet,
IEEE Big Data 2023, Sorrento, Italy
StreamMLOps: Operationalizing Online Learning for Big Data Streaming & Real-Time Applications,
Mariam Barry, Jacob Montiel, Albert Bifet, Sameer Wadkar, Nikolay Manchev, Max Halford, Raja Chiky, Saad El Jaouhari, Katherine Shakman, Joudi Al Fehaily, Fabrice Le Deit, Vinh Thuy Tran, Eric Guerizec,
ICDE 2023
FG2AN: Fairness-Aware Graph Generative Adversarial Networks,
Zichong Wang, Charles Wallace, Albert Bifet, Xin Yao, Wenbin Zhang,
ECML/PKDD 2023
Assessing Vulnerability from Its Description,
Zijing Zhang, Vimal Kumar, Michael Mayo, Albert Bifet,
UbiSec 2022, Zhangjiajie, China
ORSUM 2022 - 5th Workshop on Online Recommender Systems and User Modeling,
João Vinagre, Marie Al Ghossein, Alipio Mario Jorge, Albert Bifet, Ladislav Peska,
RecSys 2022, Seattle (USA), United States
Repeated Augmented Rehearsal : A simple but strong baseline for online continual learning,
Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert Bifet, Nick Jin Sean Lim, Yunzhe Jia,
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022 2022, Nouvelle Orleans, United States
Online Hyperparameter Optimization for Streaming Neural Networks,
Nuwan Gunasekara, Heitor Murilo Gomes, Bernhard Pfahringer, Albert Bifet,
IJCNN 2022, Padua, Italy
Online Clustering: Algorithms, Evaluation, Metrics, Applications and Benchmarking,
Jacob Montiel, Hoang Anh Ngo, Minh Huong Le Nguyen, Albert Bifet,
KDD 2022, Washington, United States
Adaptive Online Domain Incremental Continual Learning,
Nuwan Gunasekara, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer,
ICANN 2022, Bristol, United Kingdom
Adaptive Neural Networks for Online Domain Incremental Continual Learning,
Nuwan Gunasekara, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer,
DS 2022, Montpellier, France
StreamFlow: A System for Summarizing and Learning Over Industrial Big Data Streams,
Mariam Barry, Saad El Jaouhari, Albert Bifet, Jacob Montiel, Eric Guerizec, Raja Chiky,
IEEE Big Data 2022, Osaka, Japan
Stream2Graph: Dynamic Knowledge Graph for Online Learning Applied in Large-scale Network,
Mariam Barry, Albert Bifet, Raja Chiky, Saad El Jaouhari, Jacob Montiel, Aissa El Ouafi, Eric Guerizec,
IEEE Big Data 2022, Osaka, Japan
Continuous Health Monitoring of Machinery using Online Clustering on Unlabeled Data Streams,
Minh Huong Le Nguyen, Fabien Turgis, Pierre Emmanuel Fayemi, Albert Bifet,
IEEE Big Data 2022, Osaka, Japan
Linear tree shap,
Peng Yu, Albert Bifet, Jesse Read, Chao Xu,
NeurIPS 2022, New Orleans, United States
Evolution-Based Online Automated Machine Learning,
Cedric Kulbach, Jacob Montiel, Maroua Bahri, Marco Heyden, Albert Bifet,
PAKDD 2022, Chengdu, China
A simple but strong baseline for online continual learning: Repeated Augmented Rehearsal,
Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert Bifet, Nick Jin Sean Lim, Yunzhe Jia,
NeurIPS 2022
Green Accelerated Hoeffding Tree,
Eva Garcia Martin, Albert Bifet, Niklas Lavesson, Rikard Konig, Henrik Linusson,
CoRR 2022
AI Transformation in the Public Sector: Ongoing Research,
Einav Peretz Andersson, Niklas Lavesson, Albert Bifet, Patrick Mikalef,
SAIS 2021, Lulea, Sweden
Studying and Exploiting the Relationship Between Model Accuracy and Explanation Quality,
Yunzhe Jia, Eibe Frank, Bernhard Pfahringer, Albert Bifet, Nick Jin Sean Lim,
ECML/PKDD 2021, Bilbao, Spain
ORSUM 2021 - 4th Workshop on Online Recommender Systems and User Modeling,
João Vinagre, Alipio Mario Jorge, Marie Al Ghossein, Albert Bifet,
RecSys 2021, Amsterdam, Netherlands
FARF: A Fair and Adaptive Random Forests Classifier,
Wenbin Zhang, Albert Bifet, Xiangliang Zhang, Jeremy Weiss, Wolfgang Nejdl,
PAKDD 2021, Virtual, Singapore
Fast and lightweight binary and multi-branch Hoeffding Tree Regressors,
Saulo Martiello Mastelini, Jacob Montiel, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Andre De Carvalho,
ICDM 2021, Auckland, New Zealand
Fingerprinting Concepts in Data Streams with Supervised and Unsupervised Meta-Information,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet, Russel Pears,
ICDE 2021, Chania, Greece
S2CE: a hybrid cloud and edge orchestrator for mining exascale distributed streams,
Nicolas Kourtellis, Herodotos Herodotou, Maciej Grzenda, Piotr Wawrzyniak, Albert Bifet,
DEBS 2021, Milan (Italie) Virtuel, Italy
Kalman Filtering for Learning with Evolving Data Streams,
Giacomo Ziffer, Alessio Bernardo, Emanuele Della Valle, Albert Bifet,
IEEE BigData 2021, Orlando (Floride, Etats-Unis) Virtuel, United States
Challenges of Machine Learning for Data Streams in the Banking Industry,
Mariam Barry, Albert Bifet, Raja Chiky, Jacob Montiel, Vinh Thuy Tran,
BDA 2021, Virtual, India
Confident Interpretations of Black Box Classifiers,
Nedeljko Radulovic, Albert Bifet, Fabian Suchanek,
IJCNN 2021, Shenzhen, China
Model Compression for Dynamic Forecast Combination,
Vitor Cerqueira, Luis Torgo, Carlos Soares, Albert Bifet,
CoRR 2021
Sketches for Time-Dependent Machine Learning,
Jesus Antonanzas, Marta Arias, Albert Bifet,
CoRR 2021
Fast Incremental Na\"ıve Bayes with Kalman Filtering,
Giacomo Ziffer, Alessio Bernardo, Emanuele Della Valle, Albert Bifet,
20th International Conference on Data Mining Workshops, ICDM Workshops 2020 2020, Sorrento, Italy
Performance measures for evolving predictions under delayed labelling classification,
Maciej Grzenda, Heitor Murilo Gomes, Albert Bifet,
IJCNN 2020, Glasgow, United Kingdom
Adaptive XGBoost for Evolving Data Streams,
Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, Albert Bifet,
IJCNN 2020, Glasgow, United Kingdom
ORSUM 2020- Workshop on Online Recommender Systems and User Modeling,
João Vinagre, Alípio Mário Jorge, Marie Al-Ghossein, Albert Bifet,
RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22-26, 2020 2020, Virtual, Brazil
Challenges of Stream Learning for Predictive Maintenance in the Railway Sector,
Minh Huong Le Nguyen, Fabien Turgis, Pierre Emmanuel Fayemi, Albert Bifet,
IoT Streams/ITEM@PKDD/ECML 2020, Ghent, Belgium
confStream: Automated Algorithm Selection and Configuration of Stream Clustering Algorithms,
Matthias Carnein, Heike Trautmann, Albert Bifet, Bernhard Pfahringer,
LION 2020, Athens, Greece
Randomizing the Self-Adjusting Memory for Enhanced Handling of Concept Drift,
Viktor Losing, Barbara Hammer, Heiko Wersing, Albert Bifet,
IJCNN 2020, Glasgow, United Kingdom
On Ensemble Techniques for Data Stream Regression,
Heitor Murilo Gomes, Jacob Montiel, Saulo Martiello Mastelini, Bernhard Pfahringer, Albert Bifet,
IJCNN 2020, Glasgow, United Kingdom
Incremental Rebalancing Learning on Evolving Data Streams,
Alessio Bernardo, Emanuele Della Valle, Albert Bifet,
ICDM 2020, Sorrento, Italy
Unsupervised Concept Drift Detection Using a Student-Teacher Approach,
Vitor Cerqueira, Heitor Murilo Gomes, Albert Bifet,
DS 2020, thessa, Greece
Improving parallel performance of ensemble learners for streaming data through data locality with mini-batching,
Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger,
HPCC/DSS/SmartCity 2020, Fiji, Japan
Streaming Time Series Forecasting using Multi-Target Regression with Dynamic Ensemble Selection,
Dihia Boulegane, Albert Bifet, Haytham Elghazel, Giyyarpuram Madhusudan,
IEEE BigData 2020, Atlanta, United States
AutoML for Stream k-Nearest Neighbors Classification,
Maroua Bahri, Bruno Veloso, Albert Bifet, João Gama,
IEEE BigData 2020, Atlanta, United States
C-SMOTE: Continuous Synthetic Minority Oversampling for Evolving Data Streams,
Alessio Bernardo, Heitor Murilo Gomes, Jacob Montiel, Bernhard Pfahringer, Albert Bifet, Emanuele Della Valle,
IEEE BigData 2020, Atlanta, United States
Efficient Batch-Incremental Classification Using UMAP for Evolving Data Streams,
Maroua Bahri, Bernhard Pfahringer, Albert Bifet, Silviu Maniu,
IDA 2020, Konstanz / Virtual, Germany
Compressed k-Nearest Neighbors Ensembles for Evolving Data Streams,
Maroua Bahri, Albert Bifet, Silviu Maniu, Rodrigo Fernandes De Mello, Nikolaos Tziortziotis,
ECAI 2020, Santiago de Compostella / Virtual, Spain
CS-ARF: Compressed Adaptive Random Forests for Evolving Data Stream Classification,
Maroua Bahri, Heitor Murilo Gomes, Albert Bifet, Silviu Maniu,
IJCNN 2020, Glasgow / Virtual, United Kingdom
Survey on Feature Transformation Techniques for Data Streams,
Maroua Bahri, Albert Bifet, Silviu Maniu, Heitor Murilo Gomes,
IJCAI 2020, Yokohama / Virtual, Japan
Fast Incremental Naïve Bayes with Kalman Filtering,
Giacomo Ziffer, Alessio Bernardo, Emanuele Della Valle, Albert Bifet,
ICDM 2020
ORSUM - Workshop on Online Recommender Systems and User Modeling,
João Vinagre, Alipio Mario Jorge, Marie Al Ghossein, Albert Bifet,
RecSys 2020
Emergent and Unspecified Behaviors in Streaming Decision Trees,
Chaitanya Manapragada, Geoffrey Webb, Mahsa Salehi, Albert Bifet,
CoRR 2020
An Eager Splitting Strategy for Online Decision Trees,
Chaitanya Manapragada, Heitor Murilo Gomes, Mahsa Salehi, Albert Bifet, Geoffrey Webb,
CoRR 2020
Streaming Random Patches for Evolving Data Stream Classification,
Heitor Murilo Gomes, Jesse Read, Albert Bifet ,
ICDM 2019, Beijing, China
Real-Time Machine Learning Competition on Data Streams at the IEEE Big Data 2019,
Dihia Boulegane, Nedeljko Radulovic, Albert Bifet , Ghislain Fievet, Jimin Sohn, Yeonwoo Nam, Seojeong Yu, Dong Wan Choi,
IEEE BigData 2019, Los Angeles, United States
Network of Experts: Learning from Evolving Data Streams Through Network-Based Ensembles,
Heitor Murilo Gomes, Albert Bifet , Philippe Fournier Viger, Jones Granatyr, Jesse Read,
ICONIP 2019
Adaptive Algorithms for Estimating Betweenness and k-path Centralities,
Mostafa Haghir Chehreghani, Albert Bifet , Talel Abdessalem,
CIKM 2019, Beijing, France
Continuous Analytics of Web Streams,
Riccardo Tommasini, Robin Keskisarkka, Jean Paul Calbimonte, Eva Blomqvist, Emanuele Della Valle, Albert Bifet ,
WWW 2019, San Francisco, United States
ORSUM 2019 2nd workshop on online recommender systems and user modeling,
João Vinagre, Alipio Mario Jorge, Albert Bifet , Marie Al Ghossein,
RecSys 2019, Copenhagen, France
Metropolis-Hastings Algorithms for Estimating Betweenness Centrality Talel Abdessalem,
Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet ,
22nd International Conference on Extending Database Technology EDBT 2019 2019, Lisbon, Portugal
Adaptive Random Forests with Resampling for Imbalanced data Streams,
Luis Eduardo Boiko Ferreira, Heitor Murilo Gomes, Albert Bifet , Luiz Oliveira,
IJCNN 2019, Budapest, France
Feature Scoring using Tree-Based Ensembles for Evolving Data Streams,
Heitor Murilo Gomes, Rodrigo Fernandes De Mello, Bernhard Pfahringer, Albert Bifet ,
IEEE BigData 2019
Semi-supervised Learning over Streaming Data using MOA,
Minh Huong Le Nguyen, Heitor Murilo Gomes, Albert Bifet ,
IEEE BigData 2019
Metropolis-Hastings Algorithms for Estimating Betweenness Centrality,
Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet ,
EDBT 2019
IDSA-IoT: An Intrusion Detection System Architecture for IoT Networks,
Guilherme Weigert Cassales, Hermes Senger, Elaine Ribeiro De Faria, Albert Bifet ,
ISCC 2019
Towards Automated Configuration of Stream Clustering Algorithms,
Matthias Carnein, Heike Trautmann, Albert Bifet , Bernhard Pfahringer,
PKDD/ECML Workshops 2019
Resource-aware Elastic Swap Random Forest for Evolving Data Streams,
Diego Marrón, Eduard Ayguade, Jose Ramon Herrero, Albert Bifet ,
CoRR 2019
Rebalancing Learning on Evolving Data Streams,
Alessio Bernardo, Emanuele Della Valle, Albert Bifet ,
CoRR 2019
A Sketch-Based Naive Bayes Algorithms for Evolving Data Streams,
Maroua Bahri, Silviu Maniu, Albert Bifet ,
IEEE BigData 2018, Seattle, United States
Learning Fast and Slow: A Unified Batch/Stream Framework,
Jacob Montiel, Albert Bifet , Viktor Losing, Jesse Read, Talel Abdessalem,
IEEE BigData 2018, Seattle, United States
DyBED: An Efficient Algorithm for Updating Betweenness Centrality in Directed Dynamic Graphs,
Mostafa Haghir Chehreghani, Albert Bifet , Talel Abdessalem,
IEEE BigData 2018, Seattle, United States
An In-depth Comparison of Group Betweenness Centrality Estimation Algorithms,
Mostafa Haghir Chehreghani, Albert Bifet , Talel Abdessalem,
IEEE BigData 2018, Seattle, United States
Unsupervised real-time detection of BGP anomalies leveraging high-rate and fine-grained telemetry data,
Andrian Putina , Steven Barth, Albert Bifet , Drew Pletcher, Cristina Precup, Patrice Nivaggioli, Dario Rossi ,
INFOCOM Workshops 2018, Honolulu, United States
Adaptive random forests for data stream regression,
Heitor Murilo Gomes, Jean Paul Barddal, Luis Eduardo Boiko Ferreira, Albert Bifet ,
ESANN 2018, Bruges, Belgium
Efficient Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs,
Mostafa Haghir Chehreghani, Albert Bifet , Talel Abdessalem,
PAKDD 2018, Melbourne, Australia
Scalable Model-Based Cascaded Imputation of Missing Data,
Jacob Montiel, Jesse Read, Albert Bifet , Talel Abdessalem,
PAKDD 2018, Melbourne, Australia
Telemetry-based stream-learning of BGP anomalies,
Andrian Putina , Dario Rossi , Albert Bifet , Steven Barth, Drew Pletcher, Cristina Precup, Patrice Nivaggioli,
Big-DAMA@SIGCOMM 2018, Budapest, Hungary
EXAD: A System for Explainable Anomaly Detection on Big Data Traces,
Fei Song, Yanlei Diao, Jesse Read, Arnaud Stiegler, Albert Bifet ,
ICDM Workshops 2018, Singapore, Singapore
Large-Scale Learning from Data Streams with Apache SAMOA,
Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet ,
CoRR 2018
Droplet Ensemble Learning on Drifting Data Streams,
Pierre Xavier Loeffel, Albert Bifet , Christophe Marsala, Marcin Detyniecki,
IDA 2017, Londres, United Kingdom
Internet of Things (IoT) Analytics,
Albert Bifet ,
The 16th International Conference on Artificial Intelligence and Soft Computing ICAISC 2017 2017, Zakopane, Poland
Low-latency multi-threaded ensemble learning for dynamic big data streams,
Diego Marron, Eduard Ayguade, Jose Herrero, Jesse Read, Albert Bifet ,
IEEE BigData 2017, Boston, France
Predicting over-indebtedness on batch and streaming data,
Jacob Montiel, Albert Bifet , Talel Abdessalem,
IEEE BigData 2017
Extremely Fast Decision Tree Mining for Evolving Data Streams,
Albert Bifet , Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer,
KDD 2017
Massive Online Analytics for the Internet of Things (IoT),
Albert Bifet,
The 8th Asian Conference on Machine Learning 2016, Hamilton, New Zealand
Echo State Hoeffding Tree Learning,
Diego Marron, Jesse Read, Albert Bifet, Talel Abdessalem, Eduard Ayguade, Jose Herrero,
ACML 2016
VHT: Vertical hoeffding tree,
Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet, Arinto Murdopo,
IEEE BigData 2016
IoT Big Data Stream Mining,
Gianmarco De Francisci Morales, Albert Bifet, Latifur Khan, João Gama, Wei Fan,
KDD 2016
On Dynamic Feature Weighting for Feature Drifting Data Streams,
Jean Paul Barddal, Heitor Murilo Gomes, Fabricio Enembreck, Bernhard Pfahringer, Albert Bifet,
ECML/PKDD 2016
Analyzing Big Data Streams with Apache SAMOA,
Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet,
MSM@WWW,MUSE@PKDD/ECML 2016
StreamDM: Advanced Data Mining in Spark Streaming,
Albert Bifet, Silviu Maniu, Jianfeng Qian, Guangjian Tian, Cheng He, Wei Fan,
ICDM Workshops 2015, Atlantic City, NJ, United States
Use of ensembles of Fourier spectra in capturing recurrent concepts in data streams,
Sripirakas Sakthithasan, Russel Pears, Albert Bifet, Bernhard Pfahringer,
IJCNN 2015
Efficient Online Evaluation of Big Data Stream Classifiers,
Albert Bifet, Gianmarco De Francisci Morales, Jesse Read, Geoff Holmes, Bernhard Pfahringer,
KDD 2015
Preface,
Wei Fan, Albert Bifet, Qiang Yang, Philip Yu,
BigMine 2015
Drift Detection Using Stream Volatility,
David Tse Jung Huang, Yun Sing Koh, Gillian Dobbie, Albert Bifet,
ECML/PKDD 2015
Deep learning in partially-labeled data streams,
Jesse Read, Fernando Perez Cruz, Albert Bifet,
SAC 2015
Change detection in categorical evolving data streams Détection des changement dans des flots de données qualitatives,
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet,
SAC 2014 - 29th Annual ACM Symposium on Applied Computing 2014, Gyeongju, Korea, Republic of
Détection de changements dans des flots de données qualitatives Change detection in categorical evolving data streams,
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet,
14e Journées Internationales Francophones sur l'Extraction et la Gestion des Connaissances (EGC) 2014, Rennes, France
Distributed Adaptive Model Rules for mining big data streams,
Anh Thu Vu, Gianmarco De Francisci Morales, João Gama, Albert Bifet,
IEEE BigData 2014
Détection de changements dans des flots de données qualitatives,
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet,
EGC 2014
Big Data Stream Learning with SAMOA,
Albert Bifet, Gianmarco De Francisci Morales,
ICDM Workshops 2014
Multi-label Classification with Meta-Labels,
Jesse Read, Antti Puurula, Albert Bifet,
ICDM 2014
Change detection in categorical evolving data streams,
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet,
SAC 2014
Kaggle LSHTC4 Winning Solution,
Antti Puurula, Jesse Read, Albert Bifet,
CoRR 2014
Clustering Based Active Learning for Evolving Data Streams,
Dino Ienco, Albert Bifet, Indre Zliobaite, Bernhard Pfahringer,
Discovery Science 2013
CD-MOA: Change Detection Framework for Massive Online Analysis,
Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes, Indre Zliobaite,
IDA 2013
STRIP: stream learning of influence probabilities,
Konstantin Kutzkov, Albert Bifet, Francesco Bonchi, Aristides Gionis,
KDD 2013
Pitfalls in Benchmarking Data Stream Classification and How to Avoid Them,
Albert Bifet, Jesse Read, Indre Zliobaite, Bernhard Pfahringer, Geoff Holmes,
ECML/PKDD 2013
Efficient data stream classification via probabilistic adaptive windows,
Albert Bifet, Bernhard Pfahringer, Jesse Read, Geoff Holmes,
SAC 2013
Stream Data Mining Using the MOA Framework,
Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read,
DASFAA 2012
MOA-TweetReader: Real-Time Analysis in Twitter Streaming Data,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer,
Discovery Science 2011
Online Evaluation of Email Streaming Classifiers Using GNUsmail,
Jose Carmona Cejudo, Manuel Baena Garcia, Jose Del Campo Avila, Albert Bifet, João Gama, Rafael Morales Bueno,
IDA 2011
Mining frequent closed graphs on evolving data streams,
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Ricard Gavalda,
KDD 2011
An effective evaluation measure for clustering on evolving data streams,
Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
KDD 2011
MOA: A Real-Time Analytics Open Source Framework,
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl,
ECML/PKDD 2011
Active Learning with Evolving Streaming Data,
Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, Geoff Holmes,
ECML/PKDD 2011
Detecting Sentiment Change in Twitter Streaming Data,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Ricard Gavalda,
WAPA 2011
Using GNUsmail to Compare Data Stream Mining Methods for On-line Email Classification,
Jose Carmona Cejudo, Manuel Baena Garcia, Rafael Morales Bueno, João Gama, Albert Bifet,
WAPA 2011
Streaming Multi-label Classification,
Jesse Read, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
WAPA 2011
MOA Concept Drift Active Learning Strategies for Streaming Data,
Indre Zliobaite, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
WAPA 2011
GNUsmail: Open Framework for On-line Email Classification,
Jose Carmona Cejudo, Manuel Baena Garcia, Jose Del Campo Avila, Rafael Morales Bueno, Albert Bifet,
ECAI 2010
Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA,
Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
ICDM Workshops 2010
Fast Perceptron Decision Tree Learning from Evolving Data Streams,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Eibe Frank,
PAKDD 2010
Leveraging Bagging for Evolving Data Streams,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer,
ECML/PKDD 2010
MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering,
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl,
WAPA 2010
Improving Adaptive Bagging Methods for Evolving Data Streams,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Ricard Gavalda,
ACML 2009
New ensemble methods for evolving data streams,
Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Ricard Gavalda,
KDD 2009
An Analysis of Factors Used in Search Engine Ranking,
Albert Bifet, Carlos Castillo, Paul Alexandru Chirita, Ingmar Weber,
AIRWeb 2005

Journal articles

A comparative study of four deep learning algorithms for predicting tree stem radius measured by dendrometer: A case study,
Guilherme Weigert Cassales, Serajis Salekin, Nick Jin Sean Lim, Dean Meason, Albert Bifet, Bernhard Pfahringer, Eibe Frank,
Ecol. Informatics 2025
Machine Learning (In) Security: A Stream of Problems,
Fabricio Ceschin, Marcus Botacin, Albert Bifet, Bernhard Pfahringer, Luiz Oliveira, Heitor Murilo Gomes, Andre Gregio,
DTRAP 2024
Gradient boosted trees for evolving data streams,
Nuwan Gunasekara, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet,
Mach. Learn. 2024
A Survey on Semi-supervised Learning for Delayed Partially Labelled Data Streams,
Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Fernandes De Mello, Jesse Read, Minh Huong Le Nguyen, Albert Bifet,
ACM Computing Surveys 2023
teex: A toolbox for the evaluation of explanations,
Jesus Antonanzas, Yunzhe Jia, Eibe Frank, Albert Bifet, Bernhard Pfahringer,
Neurocomputing 2023
Balancing Performance and Energy Consumption of Bagging Ensembles for the Classification of Data Streams in Edge Computing,
Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger,
IEEE Transactions on Network and Service Management 2023
Combining Diverse Meta-Features to Accurately Identify Recurring Concept Drift in Data Streams,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, Albert Bifet,
ACM Transactions on Knowledge Discovery from Data (TKDD) 2023
STUDD: a student-teacher method for unsupervised concept drift detection,
Vitor Cerqueira, Heitor Murilo Gomes, Albert Bifet, Luis Torgo,
Machine Learning 2023
Wangiri Fraud: Pattern Analysis and Machine-Learning-Based Detection,
Akshaya Ravi, Mounira Msahli, Han Qiu, Gérard Memmi , Albert Bifet, Meikang Qiu,
IEEE Internet of Things Journal 2023
Towards time-evolving analytics: Online learning for time-dependent evolving data streams,
Giacomo Ziffer, Alessio Bernardo, Emanuele Della Valle, Vitor Cerqueira, Albert Bifet,
Data Sci. 2023
Resource-Aware Edge-Based Stream Analytics,
Ioan Petri, Ioan Chirila, Heitor Murilo Gomes, Albert Bifet, Omer Rana,
IEEE Internet Computing 2022
Analyzing and repairing concept drift adaptation in data stream classification,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Russel Pears, Mykola Pechenizkiy, Albert Bifet, Gustavo Olivares, Guy Coulson,
Mach. Learn. 2022, Porto, Portugal
Preface to the special issue on dynamic recommender systems and user models,
João Vinagre, Alipio Mario Jorge, Marie Al Ghossein, Albert Bifet, Paolo Cremonesi,
User Modeling and User-Adapted Interaction 2022
TA4L: Efficient temporal abstraction of multivariate time series,
Natalia Mordvanyuk, Beatriz López, Albert Bifet,
Knowledge-Based Systems 2022
LP-ROBIN: Link prediction in dynamic networks exploiting incremental node embedding,
Emanuele Pio Barracchia, Gianvito Pio, Albert Bifet, Heitor Murilo Gomes, Bernhard Pfahringer, Michelangelo Ceci,
Information Sciences 2022
SOKNL: A novel way of integrating K-nearest neighbours with adaptive random forest regression for data streams,
Yibin Sun, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet,
Data Mining and Knowledge Discovery 2022
An eager splitting strategy for online decision trees in ensembles,
Chaitanya Manapragada, Heitor Murilo Gomes, Mahsa Salehi, Albert Bifet, Geoffrey Webb,
Data Mining and Knowledge Discovery 2022
A Survey on Spatio-temporal Data Analytics Systems,
Mahbub Alam, Luis Torgo, Albert Bifet,
ACM Computing Surveys 2022
Open challenges for Machine Learning based Early Decision-Making research,
Alexis Bondu, Youssef Achenchabe, Albert Bifet, Fabrice Clerot, Antoine Cornuejols, João Gama, Georges Hebrail, Vincent Lemaire, Pierre Francois Marteau,
SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining 2022
Energy modeling of Hoeffding tree ensembles,
Eva Garcia Martin, Albert Bifet, Niklas Lavesson,
Intelligent Data Analysis 2021
Learning from evolving data streams through ensembles of random patches,
Heitor Murilo Gomes, Jesse Read, Albert Bifet, Robert Durrant,
Knowledge and Information Systems (KAIS) 2021
River: machine learning for streaming data in Python,
Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse Read, Talel Abdessalem, Albert Bifet,
Journal of Machine Learning Research 2021
Improving the performance of bagging ensembles for data streams through mini-batching,
Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger,
Information Sciences 2021
vertTIRP: Robust and efficient vertical frequent time interval-related pattern mining,
Natalia Mordvanyuk, Beatriz López, Albert Bifet,
Expert Systems with Applications 2021
Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs,
Mostafa Haghir Chehreghani, Albert Bifet, Talel Abdessalem,
Fundamenta Informaticae 2021
Binding data mining and expert knowledge for one-day-ahead prediction of hourly global solar radiation,
Jose Del Campo Avila, Abdelatif Takilalte, Albert Bifet, Llanos Mora López,
Expert Systems with Applications 2021
CURIE: a cellular automaton for concept drift detection,
Jesus Lobo, Javier Del Ser, Eneko Osaba, Albert Bifet, Francisco Herrera,
Data Mining and Knowledge Discovery 2021
Recurring concept memory management in data streams: exploiting data stream concept evolution to improve performance and transparency,
Ben Halstead, Yun Sing Koh, Patricia Riddle, Russel Pears, Mykola Pechenizkiy, Albert Bifet,
Data Mining and Knowledge Discovery 2021
Data stream analysis: Foundations, major tasks and tools,
Maroua Bahri, Albert Bifet, João Gama, Heitor Murilo Gomes, Silviu Maniu,
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2021
Sampling informative patterns from large single networks,
Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet, Meriem Bouzbila,
Future Generation Computer Systems 2020
Discriminative Streaming Network Embedding,
Yiyan Qi, Jiefeng Cheng, Xiaojun Chen, Reynold Cheng, Albert Bifet, Pinghui Wang,
Knowledge-Based Systems 2020
IoT data stream analytics,
Albert Bifet, João Gama,
Annals of Telecommunications - annales des télécommunications 2020
Delayed labelling evaluation for data streams,
Maciej Grzenda, Heitor Murilo Gomes, Albert Bifet,
Data Mining and Knowledge Discovery 2020
Spiking Neural Networks and online learning: An overview and perspectives,
Jesus Lobo, Javier Del Ser, Albert Bifet, Nikola Kasabov,
Neural Networks 2020
SCALAR - A Platform for Real-time Machine Learning Competitions on Data Streams,
Nedeljko Radulovic, Dihia Boulegane, Albert Bifet,
Journal of Open Source Software 2020
Introduction to the special issue on Big Data, IoT Streams and Heterogeneous Source Mining,
Jesse Read, Albert Bifet , Wei Fan, Qiang Yang, Philip Yu,
International Journal of Data Science and Analytics 2019
Recurring concept meta-learning for evolving data streams,
Robert Anderson, Yun Sing Koh, Gillian Dobbie, Albert Bifet ,
Expert Systems with Applications 2019
Boosting decision stumps for dynamic feature selection on data streams,
Jean Paul Barddal, Fabricio Enembreck, Heitor Murilo Gomes, Albert Bifet , Bernhard Pfahringer,
Information Systems 2019
Machine learning for streaming data,
Heitor Murilo Gomes, Jesse Read, Albert Bifet , Jean Paul Barddal, João Gama,
SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining 2019
Efficient frequent subgraph mining on large streaming graphs,
Abhik Ray, Lawrence Holder, Albert Bifet ,
Intelligent Data Analysis 2019
Measuring the Shattering coefficient of Decision Tree models,
Rodrigo Fernandes De Mello, Chaitanya Manapragada, Albert Bifet ,
Expert Systems with Applications 2019
On learning guarantees to unsupervised concept drift detection on data streams,
Rodrigo Fernandes De Mello, Yule Vaz, Carlos Henrique Grossi Ferreira, Albert Bifet ,
Expert Systems with Applications 2019
Merit-guided dynamic feature selection filter for data streams,
Jean Paul Barddal, Fabricio Enembreck, Heitor Murilo Gomes, Albert Bifet , Bernhard Pfahringer,
Expert Syst. Appl. 2019
Correction to: Adaptive random forests for evolving data stream classification,
Heitor Murilo Gomes, Albert Bifet , Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bernhard Pfahringer, Geoff Holmes, Talel Abdessalem,
Mach. Learn. 2019
Machine learning for streaming data: state of the art, challenges, and opportunities,
Heitor Murilo Gomes, Jesse Read, Albert Bifet , Jean Paul Barddal, João Gama,
SIGKDD Explor. 2019
Discriminative Distance-Based Network Indices with Application to Link Prediction,
Mostafa Haghir Chehreghani, Albert Bifet , Talel Abdessalem,
The Computer Journal 2018
Scikit-Multiflow: A Multi-output Streaming Framework,
Jacob Montiel, Jesse Read, Albert Bifet , Talel Abdessalem,
Journal of Machine Learning Research 2018
Predicting attributes and friends of mobile users from AP-Trajectories,
Pinghui Wang, Feiyang Sun, Di Wang, Jing Tao, Xiaohong Guan, Albert Bifet ,
Inf. Sci. 2018
Adaptive random forests for evolving data stream classification,
Heitor Murilo Gomes, Albert Bifet , Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bernhard Pfahringer, Geoff Holmes, Talel Abdessalem,
Machine Learning 2017
Data stream classification using random feature functions and novel method combinations,
Diego Marron, Jesse Read, Albert Bifet , Nacho Navarro,
Journal of Systems and Software 2017
A Survey on Ensemble Learning for Data Stream Classification,
Heitor Murilo Gomes, Jean Paul Barddal, Fabricio Enembreck, Albert Bifet ,
ACM Computing Surveys 2017
A streaming flow-based technique for traffic classification applied to 12 + 1 years of Internet traffic,
Valentin Carela Español, Pere Barlet Ros, Albert Bifet, Kensuke Fukuda,
Telecommun. Syst. 2016
Adaptive Model Rules From High-Speed Data Streams,
João Duarte, João Gama, Albert Bifet,
ACM Trans. Knowl. Discov. Data 2016
SAMOA: scalable advanced massive online analysis,
Gianmarco De Francisci Morales, Albert Bifet,
J. Mach. Learn. Res. 2015
Evaluation methods and decision theory for classification of streaming data with temporal dependence,
Indre Zliobaite, Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes,
Mach. Learn. 2015
A survey on concept drift adaptation,
João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, Abdelhamid Bouchachia,
ACM Comput. Surv. 2014
Active Learning With Drifting Streaming Data,
Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, Geoffrey Holmes,
IEEE Trans. Neural Networks Learn. Syst. 2014
Scalable and efficient multi-label classification for evolving data streams,
Jesse Read, Albert Bifet, Geoff Holmes, Bernhard Pfahringer,
Mach. Learn. 2012
Next challenges for adaptive learning systems,
Indre Zliobaite, Albert Bifet, Mohamed Medhat Gaber, Bogdan Gabrys, João Gama, Leandro Minku, Katarzyna Musial,
SIGKDD Explor. 2012
Ensembles of Restricted Hoeffding Trees,
Albert Bifet, Eibe Frank, Geoff Holmes, Bernhard Pfahringer,
ACM Trans. Intell. Syst. Technol. 2012
MOA: Massive Online Analysis,
Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer,
J. Mach. Learn. Res. 2010
Mining frequent closed rooted trees,
Jose Balcazar, Albert Bifet, Antoni Lozano,
Mach. Learn. 2010

Editorships

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part I,
Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2024
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part II,
Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2024
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part III,
Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2024
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part IV,
Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2024
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part V,
Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2024
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VI,
Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2024
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VII,
Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2024
Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VIII,
Albert Bifet, Povilas Daniusis, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Kai Puolamaki, Indre Zliobaite,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2024
Discovery Science - 26th International Conference, DS 2023, Porto, Portugal, October 9-11, 2023, Proceedings,
Albert Bifet, Ana Carolina Lorena, Rita Ribeiro, João Gama, Pedro Abreu,
['DS', 'Lecture Notes in Computer Science'] 2023
Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part I,
Irena Koprinska, Paolo Mignone, Riccardo Guidotti, Szymon Jaroszewicz, Holger Froning, Francesco Gullo, Pedro Ferreira, Damian Roqueiro, Gaia Ceddia, Slawomir Nowaczyk, João Gama, Rita Ribeiro, Ricard Gavalda, Elio Masciari, Zbigniew Ras, Ettore Ritacco, Francesca Naretto, Andreas Theissler, Przemyslaw Biecek, Wouter Verbeke, Gregor Schiele, Franz Pernkopf, Michaela Blott, Ilaria Bordino, Ivan Luciano Danesi, Giovanni Ponti, Lorenzo Severini, Annalisa Appice, Giuseppina Andresini, Iberia Medeiros, Guilherme Graca, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Diego Saldana Miranda, Konstantinos Sechidis, Arif Canakoglu, Sara Pidò, Pietro Pinoli, Albert Bifet, Sepideh Pashami,
['PKDD/ECML Workshops', 'Communications in Computer and Information Science'] 2023
Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part II,
Irena Koprinska, Paolo Mignone, Riccardo Guidotti, Szymon Jaroszewicz, Holger Froning, Francesco Gullo, Pedro Ferreira, Damian Roqueiro, Gaia Ceddia, Slawomir Nowaczyk, João Gama, Rita Ribeiro, Ricard Gavalda, Elio Masciari, Zbigniew Ras, Ettore Ritacco, Francesca Naretto, Andreas Theissler, Przemyslaw Biecek, Wouter Verbeke, Gregor Schiele, Franz Pernkopf, Michaela Blott, Ilaria Bordino, Ivan Luciano Danesi, Giovanni Ponti, Lorenzo Severini, Annalisa Appice, Giuseppina Andresini, Iberia Medeiros, Guilherme Graca, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Diego Saldana Miranda, Konstantinos Sechidis, Arif Canakoglu, Sara Pidò, Pietro Pinoli, Albert Bifet, Sepideh Pashami,
['PKDD/ECML Workshops', 'Communications in Computer and Information Science'] 2023
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning - Second International Workshop, IoT Streams 2020, and First International Workshop, ITEM 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Revised Selected Papers,
João Gama, Sepideh Pashami, Albert Bifet, Moamar Sayed Mouchaweh, Holger Froning, Franz Pernkopf, Gregor Schiele, Michaela Blott,
['IoT Streams/ITEM@PKDD/ECML', 'Communications in Computer and Information Science'] 2020
ECML PKDD 2018 Workshops - DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers,
Anna Monreale, Carlos Alzate, Michael Kamp, Yamuna Krishnamurthy, Daniel Paurat, Moamar Sayed Mouchaweh, Albert Bifet , João Gama, Rita Ribeiro,
['DMLE/IOTSTREAMING@PKDD/ECML', 'Communications in Computer and Information Science'] 2019
ECML PKDD 2018 Workshops - Nemesis 2018, UrbReas 2018, SoGood 2018, IWAISe 2018, and Green Data Mining 2018, Dublin, Ireland, September 10-14, 2018, Proceedings,
Carlos Alzate, Anna Monreale, Haytham Assem, Albert Bifet , Teodora Sandra Buda, Bora Caglayan, Brett Drury, Eva Garcia Martin, Ricard Gavalda, Stefan Kramer, Niklas Lavesson, Michael Madden, Ian Molloy, Maria Irina Nicolae, Mathieu Sinn,
['Nemesis/UrbReas/SoGood/IWAISe/GDM@PKDD/ECML', 'Lecture Notes in Computer Science'] 2019
2nd Workshop on Online Recommender Systems and User Modeling, ORSUM@RecSys 2019, 19 September 2019, Copenhagen, Denmark,
João Vinagre, Alipio Mario Jorge, Albert Bifet , Marie Al Ghossein,
['ORSUM@RecSys', 'Proceedings of Machine Learning Research'] 2019
Streaming Data Mining with Massive Online Analytics (MOA),
Albert Bifet , Jesse Read, Geoff Holmes, Bernhard Pfahringer,
2018
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part III,
Albert Bifet, Michael May, Bianca Zadrozny, Ricard Gavalda, Dino Pedreschi, Francesco Bonchi, Jaime Cardoso, Myra Spiliopoulou,
['ECML/PKDD', 'Lecture Notes in Computer Science'] 2015
Generated using minifold and minifold-lincs at 2025-03-31 17:01.