People


Emilie Kaufmann

Emilie Kaufmann
Institution: 
Groups: 
Former member of the LINCS

Books And Theses

Articles

Bandit Pareto Set Identification: the Fixed Budget Setting,
Cyrille Kone, Emilie Kaufmann, Laura Richert,
AISTATS 2024, Valencia, Spain
Optimal Multi-Fidelity Best-Arm Identification,
Riccardo Poiani, Remy Degenne, Emilie Kaufmann, Alberto Maria Metelli, Marcello Restelli,
NeurIPS 2024, Vancouver (BC), Canada
Finding good policies in average-reward Markov Decision Processes without prior knowledge,
Adrienne Tuynman, Remy Degenne, Emilie Kaufmann,
NeurIPS 2024, Vancouver (Canada), Canada
Power Mean Estimation in Stochastic Monte-Carlo Tree Search,
Tuan Dam, Odalric Ambrym Maillard, Emilie Kaufmann,
UAI 2024, Barcelona, Spain
Best-Arm Identification in Unimodal Bandits,
Riccardo Poiani, Marc Jourdan, Emilie Kaufmann, Remy Degenne,
CoRR 2024
Optimistic PAC Reinforcement Learning: the Instance-Dependent View,
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann,
ALT 2023, Singapore (SG), Singapore
Dealing with Unknown Variances in Best-Arm Identification,
Marc Jourdan, Remy Degenne, Emilie Kaufmann,
ALT 2023, Singapore (SG), Singapore
An ε-Best-Arm Identification Algorithm for Fixed-Confidence and Beyond,
Marc Jourdan, Remy Degenne, Emilie Kaufmann,
NeurIPS 2023, New Orleans, United States
Adaptive Algorithms for Relaxed Pareto Set Identification,
Cyrille Kone, Emilie Kaufmann, Laura Richert,
NeurIPS 2023, La Nouvelle Orléans, LA, United States
Active Coverage for PAC Reinforcement Learning,
Aymen Al Marjani, Andrea Tirinzoni, Emilie Kaufmann,
COLT 2023, Bangalore, India
Top Two Algorithms Revisited,
Marc Jourdan, Remy Degenne, Dorian Baudry, Rianne De Heide, Emilie Kaufmann,
NeurIPS 2022, New Orleans, United States
Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs,
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann,
NeurIPS 2022, New Orleans, United States
Near-Optimal Collaborative Learning in Bandits,
Clemence Reda, Sattar Vakili, Emilie Kaufmann,
NeurIPS 2022, New Orleans, United States
Efficient Algorithms for Extreme Bandits,
Dorian Baudry, Yoan Russac, Emilie Kaufmann,
AISTATS 2022, Virtual Conference, Spain
Optimal Thompson Sampling strategies for support-aware CVaR bandits,
Dorian Baudry, Romain Gautron, Emilie Kaufmann, Odalric Maillard,
ICML 2021, Virtual, United States
Fast active learning for pure exploration in reinforcement learning,
Pierre Menard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent, Michal Valko,
ICML 2021, Vienna, Austria
A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces,
Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, Michal Valko,
AISTATS 2021, San Diego / Virtual, United States
Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited,
Omar Darwiche Domingues, Pierre Menard, Emilie Kaufmann, Michal Valko,
ALT 2021, Paris / Virtual, France
Kernel-Based Reinforcement Learning: A Finite-Time Analysis,
Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, Michal Valko,
ICML 2021, Vienna / Virtual, Austria
Top-m identification for linear bandits,
Clemence Reda, Emilie Kaufmann, Andree Delahaye Duriez,
AISTATS 2021, Virtual, United States
Adaptive Reward-Free Exploration,
Emilie Kaufmann, Pierre Menard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent, Michal Valko,
ALT 2021, Paris, France
Sub-sampling for Efficient Non-Parametric Bandit Exploration,
Dorian Baudry, Emilie Kaufmann, Odalric Ambrym Maillard,
NeurIPS 2020, Vancouver, Canada
Planning in Markov Decision Processes with Gap-Dependent Sample Complexity,
Anders Jonsson, Emilie Kaufmann, Pierre Menard, Omar Darwiche Domingues, Edouard Leurent, Michal Valko,
NeurIPS 2020, Vancouver, France
A Practical Algorithm for Multiplayer Bandits when Arm Means Vary Among Players,
Abbas Mehrabian, Etienne Boursier, Emilie Kaufmann, Vianney Perchet,
AISTATS 2020, Palermo, Italy
Solving Bernoulli Rank-One Bandits with Unimodal Thompson Sampling,
Cindy Trinh, Emilie Kaufmann, Claire Vernade, Richard Combes,
ALT 2020, San Diego, United States
Fixed-confidence guarantees for Bayesian best-arm identification,
Xuedong Shang, Rianne De Heide, Pierre Menard, Emilie Kaufmann, Michal Valko,
AISTATS 2020, Palermo, Italy
Regret Bounds for Kernel-Based Reinforcement Learning,
Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, Michal Valko,
CoRR 2020
Thompson Sampling for CVaR Bandits,
Dorian Baudry, Romain Gautron, Emilie Kaufmann, Odalric Ambrym Maillard,
CoRR 2020
A simple dynamic bandit algorithm for hyper-parameter tuning,
Xuedong Shang, Emilie Kaufmann, Michal Valko,
Workshop on Automated Machine Learning at International Conference on Machine Learning 2019, Long Beach, United States
General parallel optimization without a metric,
Xuedong Shang, Emilie Kaufmann, Michal Valko,
Algorithmic Learning Theory 2019, Chicago, United States
Adaptive black-box optimization got easier: HCT only needs local smoothness,
Xuedong Shang, Emilie Kaufmann, Michal Valko,
European Workshop on Reinforcement Learning 2018, Lille, France
Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling,
Emilie Kaufmann, Wouter Koolen, Aurelien Garivier,
NeurIPS 2018, Montréal, Canada
Corrupt Bandits for Preserving Local Privacy,
Pratik Gajane, Tanguy Urvoy, Emilie Kaufmann,
ALT 2018, Lanzarote, Spain
Pure Exploration in Infinitely-Armed Bandit Models with Fixed-Confidence,
Maryam Aziz, Jesse Anderton, Emilie Kaufmann, Javed Aslam,
ALT 2018, Lanzarote, Spain
Multi-Player Bandits Revisited Modèles de Bandits Multi-Joueurs Revisités,
Lilian Besson, Emilie Kaufmann,
Algorithmic Learning Theory 2018, Lanzarote, Spain
Multi-Armed Bandit Learning in IoT Networks: Learning helps even in non-stationary settings,
Remi Bonnefoi, Lilian Besson, Christophe Moy, Emilie Kaufmann, Jacques Palicot,
CoRR 2018
Multi-Armed Bandit Learning in IoT Networks: Learning helps even in non-stationary settings Apprentissage de Bandit Multi-Bras dans les réseaux Internet des Objets: l'apprentissage est utile même dans des cas non-stationnaires,
Rémi Bonnefoi, Lilian Besson, Christophe Moy, Emilie Kaufmann, Jacques Palicot,
CROWNCOM 2017 - 12th EAI International Conference on Cognitive Radio Oriented Wireless Networks 2017, Lisbon, Portugal
Monte-Carlo Tree Search by Best Arm Identification,
Emilie Kaufmann, Wouter Koolen,
NIPS 2017, Long Beach, United States
Maximin Action Identification: A New Bandit Framework for Games,
Aurelien Garivier, Emilie Kaufmann, Wouter Koolen,
COLT 2016, New-York, United States
On Explore-Then-Commit strategies,
Aurelien Garivier, Tor Lattimore, Emilie Kaufmann,
NIPS 2016, Barcelona, Spain
Optimal Best Arm Identification with Fixed Confidence,
Aurelien Garivier, Emilie Kaufmann,
COLT 2016, New York, United States
On the Complexity of A/B Testing,
Emilie Kaufmann , Olivier Cappe, Aurelien Garivier,
COLT 2014, Barcelona, Spain
Thompson Sampling for one-dimensial exponential family bandits,
Nathaniel Korda, Emilie Kaufmann, Rémi Munos,
NIPS 2013 - Neural Information Processing Systems Conference 2013, Lake Tahoe, United States
Information Complexity in Bandit Subset Selection,
Emilie Kaufmann, Shivaram Kalyanakrishnan,
COLT 2013, Princeton, United States
Thompson sampling for one-dimensional exponential family bandits,
Nathaniel Korda, Emilie Kaufmann, Rémi Munos,
Advances in Neural Information Processing Systems 2013, United States
On Bayesian Upper Confidence Bounds for Bandit Problems,
Emilie Kaufmann, Olivier Cappe, Aurelien Garivier,
AISTATS 2012, La Palma, Iles Canaries, Spain

Journal articles

Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits,
Lilian Besson, Emilie Kaufmann, Odalric Ambrym Maillard, Julien Seznec,
Journal of Machine Learning Research 2022
On Multi-Armed Bandit Designs for Dose-Finding Trials,
Maryam Aziz, Emilie Kaufmann, Marie Karelle Riviere,
Journal of Machine Learning Research 2021
Machine learning applications in drug development,
Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez,
Computational and Structural Biotechnology Journal 2020
Asymptotically optimal algorithms for budgeted multiple play bandits,
Alexander Luedtke, Emilie Kaufmann, Antoine Chambaz,
Machine Learning 2019
On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models,
Emilie Kaufmann, Olivier Cappe, Aurelien Garivier,
Journal of Machine Learning Research 2016

Hdr

Editorship

Misc

Generated using minifold and minifold-lincs at 2025-03-31 17:01.