|
|
⇣
|
⇣
|
Active Coverage for PAC Reinforcement Learning,
Aymen Al Marjani, Andrea Tirinzoni, Emilie Kaufmann,
COLT 2023, Bangalore, India
|
|
|
⇣
|
⇣
|
Optimistic PAC Reinforcement Learning: the Instance-Dependent View,
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann,
ALT 2023, Milan, Italy
|
|
|
|
⇣
|
Dealing with Unknown Variances in Best-Arm Identification,
Marc Jourdan, Remy Degenne, Emilie Kaufmann,
ALT 2023
|
|
|
⇣
|
⇣
|
Top Two Algorithms Revisited,
Marc Jourdan, Remy Degenne, Dorian Baudry, Rianne De Heide, Emilie Kaufmann,
NeurIPS 2022, New Orleans, United States
|
|
|
⇣
|
⇣
|
Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs,
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann,
NeurIPS 2022, New Orleans, United States
|
|
|
⇣
|
⇣
|
Near-Optimal Collaborative Learning in Bandits,
Clemence Reda, Sattar Vakili, Emilie Kaufmann,
NeurIPS 2022, New Orleans, United States
|
|
|
⇣
|
⇣
|
Efficient Algorithms for Extreme Bandits,
Dorian Baudry, Yoan Russac, Emilie Kaufmann,
AISTATS 2022, Virtual Conference, Spain
|
|
|
⇣
|
⇣
|
Optimal Thompson Sampling strategies for support-aware CVaR bandits,
Dorian Baudry, Romain Gautron, Emilie Kaufmann, Odalric Maillard,
ICML 2021, Virtual, United States
|
|
|
⇣
|
⇣
|
Fast active learning for pure exploration in reinforcement learning,
Pierre Menard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent, Michal Valko,
ICML 2021, Vienna, Austria
|
|
|
⇣
|
⇣
|
A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces,
Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, Michal Valko,
AISTATS 2021, San Diego / Virtual, United States
|
|
|
⇣
|
⇣
|
Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited,
Omar Darwiche Domingues, Pierre Menard, Emilie Kaufmann, Michal Valko,
ALT 2021, Paris / Virtual, France
|
|
|
⇣
|
⇣
|
Kernel-Based Reinforcement Learning: A Finite-Time Analysis,
Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, Michal Valko,
ICML 2021, Vienna / Virtual, Austria
|
|
|
⇣
|
⇣
|
Top-m identification for linear bandits,
Clemence Reda, Emilie Kaufmann, Andree Delahaye Duriez,
AISTATS 2021, Virtual, United States
|
|
|
⇣
|
⇣
|
Adaptive Reward-Free Exploration,
Emilie Kaufmann, Pierre Menard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent, Michal Valko,
ALT 2021, Paris, France
|
|
|
⇣
|
⇣
|
Sub-sampling for Efficient Non-Parametric Bandit Exploration,
Dorian Baudry, Emilie Kaufmann, Odalric Ambrym Maillard,
NeurIPS 2020, Vancouver, Canada
|
|
|
⇣
|
⇣
|
Planning in Markov Decision Processes with Gap-Dependent Sample Complexity,
Anders Jonsson, Emilie Kaufmann, Pierre Menard, Omar Darwiche Domingues, Edouard Leurent, Michal Valko,
NeurIPS 2020, Vancouver, France
|
|
|
⇣
|
⇣
|
A Practical Algorithm for Multiplayer Bandits when Arm Means Vary Among Players,
Abbas Mehrabian, Etienne Boursier, Emilie Kaufmann, Vianney Perchet,
AISTATS 2020, Palermo, Italy
|
|
|
⇣
|
⇣
|
Solving Bernoulli Rank-One Bandits with Unimodal Thompson Sampling,
Cindy Trinh, Emilie Kaufmann, Claire Vernade, Richard Combes,
ALT 2020, San Diego, United States
|
|
|
⇣
|
⇣
|
Fixed-confidence guarantees for Bayesian best-arm identification,
Xuedong Shang, Rianne De Heide, Pierre Menard, Emilie Kaufmann, Michal Valko,
AISTATS 2020, Palermo, Italy
|
|
|
⇣
|
|
Analyse non asymptotique d'un test séquentiel de détection de rupture et application aux bandits non stationnaires Non-asymptotic analysis of a sequential rupture detection test and its application to non-stationary bandits,
Lilian Besson, Emilie Kaufmann,
GRETSI 2019 - XXVIIème Colloque francophone de traitement du signal et des images 2019, Lille, France
|
|
|
⇣
|
|
A simple dynamic bandit algorithm for hyper-parameter tuning,
Xuedong Shang, Emilie Kaufmann, Michal Valko,
Workshop on Automated Machine Learning at International Conference on Machine Learning 2019, Long Beach, United States
|
|
|
⇣
|
|
General parallel optimization without a metric,
Xuedong Shang, Emilie Kaufmann, Michal Valko,
Algorithmic Learning Theory 2019, Chicago, United States
|
|
|
|
⇣
|
General parallel optimization a without metric,
Xuedong Shang, Emilie Kaufmann, Michal Valko,
ALT 2019
|
|
|
⇣
|
|
Adaptive black-box optimization got easier: HCT only needs local smoothness,
Xuedong Shang, Emilie Kaufmann, Michal Valko,
European Workshop on Reinforcement Learning 2018, Lille, France
|
|
|
⇣
|
⇣
|
Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling,
Emilie Kaufmann, Wouter Koolen, Aurelien Garivier,
NeurIPS 2018, Montréal, Canada
|
|
|
⇣
|
⇣
|
Corrupt Bandits for Preserving Local Privacy,
Pratik Gajane, Tanguy Urvoy, Emilie Kaufmann,
ALT 2018, Lanzarote, Spain
|
|
|
⇣
|
⇣
|
Pure Exploration in Infinitely-Armed Bandit Models with Fixed-Confidence,
Maryam Aziz, Jesse Anderton, Emilie Kaufmann, Javed Aslam,
ALT 2018, Lanzarote, Spain
|
|
|
⇣
|
|
Multi-Player Bandits Revisited Modèles de Bandits Multi-Joueurs Revisités,
Lilian Besson, Emilie Kaufmann,
Algorithmic Learning Theory 2018, Lanzarote, Spain
|
|
|
⇣
|
|
Aggregation of Multi-Armed Bandits Learning Algorithms for Opportunistic Spectrum Access Agrégation d'algorithmes d'apprentissage pour les bandits multi-bras appliquée à l'accès opportuniste au spectre,
Lilian Besson, Emilie Kaufmann, Christophe Moy,
IEEE WCNC - IEEE Wireless Communications and Networking Conference 2018, Barcelona, Spain
|
|
|
|
⇣
|
{Multi-Player Bandits Revisited},
Lilian Besson, Emilie Kaufmann,
ALT 2018
|
|
|
|
⇣
|
Aggregation of multi-armed bandits learning algorithms for opportunistic spectrum access,
Lilian Besson, Emilie Kaufmann, Christophe Moy,
WCNC 2018
|
|
|
⇣
|
|
Multi-Armed Bandit Learning in IoT Networks: Learning helps even in non-stationary settings Apprentissage de Bandit Multi-Bras dans les réseaux Internet des Objets: l'apprentissage est utile même dans des cas non-stationnaires,
Rémi Bonnefoi, Lilian Besson, Christophe Moy, Emilie Kaufmann, Jacques Palicot,
CROWNCOM 2017 - 12th EAI International Conference on Cognitive Radio Oriented Wireless Networks 2017, Lisbon, Portugal
|
|
|
⇣
|
⇣
|
Monte-Carlo Tree Search by Best Arm Identification,
Emilie Kaufmann, Wouter Koolen,
NIPS 2017, Long Beach, United States
|
|
|
⇣
|
⇣
|
Maximin Action Identification: A New Bandit Framework for Games,
Aurelien Garivier, Emilie Kaufmann, Wouter Koolen,
COLT 2016, New-York, United States
|
|
|
⇣
|
⇣
|
On Explore-Then-Commit strategies,
Aurelien Garivier, Tor Lattimore, Emilie Kaufmann,
NIPS 2016, Barcelona, Spain
|
|
|
⇣
|
⇣
|
Optimal Best Arm Identification with Fixed Confidence,
Aurelien Garivier, Emilie Kaufmann,
COLT 2016, New York, United States
|
|
|
⇣
|
⇣
|
On the Complexity of A/B Testing,
Emilie Kaufmann ■, Olivier Cappe, Aurelien Garivier,
COLT 2014, Barcelona, Spain
|
|
|
⇣
|
|
Thompson Sampling for one-dimensial exponential family bandits,
Nathaniel Korda, Emilie Kaufmann, Rémi Munos,
NIPS 2013 - Neural Information Processing Systems Conference 2013, Lake Tahoe, United States
|
|
|
⇣
|
⇣
|
Information Complexity in Bandit Subset Selection,
Emilie Kaufmann, Shivaram Kalyanakrishnan,
COLT 2013, Princeton, United States
|
|
|
⇣
|
|
Thompson sampling for one-dimensional exponential family bandits,
Nathaniel Korda, Emilie Kaufmann, Rémi Munos,
Advances in Neural Information Processing Systems 2013, United States
|
|
|
|
⇣
|
Thompson Sampling for 1-Dimensional Exponential Family Bandits,
Nathaniel Korda, Emilie Kaufmann, Remi Munos,
NIPS 2013
|
|
|
⇣
|
⇣
|
Thompson Sampling: An Asymptotically Optimal Finite-Time Analysis,
Emilie Kaufmann, Nathaniel Korda, Remi Munos,
ALT 2012, Lyon, France
|
|
|
⇣
|
⇣
|
On Bayesian Upper Confidence Bounds for Bandit Problems,
Emilie Kaufmann, Olivier Cappe, Aurelien Garivier,
AISTATS 2012, La Palma, Iles Canaries, Spain
|