People


Bertrand Charpentier

Bertrand Charpentier
Institution: 
Office: 
50
Groups: 
Former intern

Articles

Uncertainty for Active Learning on Graphs,
Dominik Fuchsgruber, Tom Wollschlager, Bertrand Charpentier, Antonio Oroz, Stephan Gunnemann,
ICML 2024
Expected Probabilistic Hierarchies,
Marcel Kollovieh, Bertrand Charpentier, Daniel Zugner, Stephan Gunnemann,
NeurIPS 2024
Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE,
Florence Regol, Joud Chataoui, Bertrand Charpentier, Mark Coates, Pablo Piantanida, Stephan Gunnemann,
CoRR 2024
Uncertainty Estimation for Molecules: Desiderata and Methods,
Tom Wollschlager, Nicholas Gao, Bertrand Charpentier, Mohamed Amine Ketata, Stephan Gunnemann,
ICML 2023
Edge Directionality Improves Learning on Heterophilic Graphs,
Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Gunnemann, Michael Bronstein,
LoG 2023
Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions,
Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zugner, Stephan Gunnemann,
NeurIPS 2023
Adversarial Training for Graph Neural Networks,
Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zugner, Stephan Gunnemann,
CoRR 2023
Differentiable DAG Sampling,
Bertrand Charpentier, Simon Kibler, Stephan Gunnemann,
ICLR 2022
End-to-End Learning of Probabilistic Hierarchies on Graphs,
Daniel Zugner, Bertrand Charpentier, Morgane Ayle, Sascha Geringer, Stephan Gunnemann,
ICLR 2022
Winning the Lottery Ahead of Time: Efficient Early Network Pruning,
John Rachwan, Daniel Zugner, Bertrand Charpentier, Simon Geisler, Morgane Ayle, Stephan Gunnemann,
ICML 2022
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning,
Bertrand Charpentier, Ransalu Senanayake, Mykel Kochenderfer, Stephan Gunnemann,
CoRR 2022
On the Robustness and Anomaly Detection of Sparse Neural Networks,
Morgane Ayle, Bertrand Charpentier, John Rachwan, Daniel Zugner, Simon Geisler, Stephan Gunnemann,
CoRR 2022
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable?,
Anna Kathrin Kopetzki, Bertrand Charpentier, Daniel Zugner, Sandhya Giri, Stephan Gunnemann,
ICML 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification,
Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zugner, Stephan Gunnemann,
NeurIPS 2021
On Out-of-distribution Detection with Energy-based Models,
Sven Elflein, Bertrand Charpentier, Daniel Zugner, Stephan Gunnemann,
CoRR 2021

Journal article

Generated using minifold and minifold-lincs at 2025-03-31 17:01.