# Numerical Simulation of Dynamic Mechanical Properties of Concrete under Uniaxial Compression

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Establishment of the Dynamic Base Force Element Equilibrium Equation

#### 2.1. Base Force Element Stiffness Matrix

#### 2.2. Damping Matrix and Mass Matrix

## 3. Meso-Structure of Concrete

#### 3.1. Random Aggregate Model

#### 3.2. Mesh Generation Method and Element Attributes

## 4. Dynamic Behavior for Concrete Meso-Components

#### 4.1. Concrete Dynamic Damaged Model

#### 4.2. Dynamic Increase Factor (DIF) for Concrete

## 5. Numerical Examples and Results

#### 5.1. Boundary Conditions and Loading Model

#### 5.2. Dynamic Failure Behavior of Concrete under Uniaxial Compressive Stress

## 6. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Bischoff, P.H.; Perry, S.H. Compressive behavior of concrete at high strain rates. Mater. Struct.
**1991**, 24, 425–450. [Google Scholar] [CrossRef] - Evans, R.H. Effect of rate of loading on the mechanical properties of some materials. J. Ice
**1942**, 18, 296–306. [Google Scholar] [CrossRef] - Abrams, D.A. Effect of rate of application of load on the compressive strength of concrete. ASTM J.
**1917**, 17, 70–78. [Google Scholar] - Bischoff, P.H.; Perry, S.H. Impact behavior of plain concrete loaded in uniaxial compression. J. Eng. Mech.
**1995**, 25, 685–693. [Google Scholar] [CrossRef] - Ross, C.A.; Tedesco, J.W.; Kuennen, S.T. Effects of strain rate on concrete strength. Aci Mater. J.
**1995**, 92, 37–47. [Google Scholar] - John, R.; Antoun, T.; Rajendran, A.M. Effect of strain rate and size on tensile strength of concrete. Shock Compression Condensed Matter
**1992**, 1994, 501–504. [Google Scholar] - Malvar, L.J.; Crawford, J.E. Dynamic Increase Factors for Concrete. In Proceedings of the Twenty-Eighth DDESB Seminar, Orlando, FL, USA, 18–20 August 1998; pp. 1–17. [Google Scholar]
- Williams, M.S. Modeling of local impact effects on plain and reinforced concrete. Aci Struc. J.
**1994**, 91, 178–187. [Google Scholar] - Kishen, J.M.C. Fracture of Rock-Concrete Interfaces: Laboratory Tests and Applications. ACI Struct. J.
**2004**, 101, 325–331. [Google Scholar] - Erzar, B.; Forquin, P. Experiments and mesoscopic modelling of dynamic testing of concrete. Mech. Mater
**2011**, 43, 505–527. [Google Scholar] [CrossRef] - Grote, D.L.; Park, S.W.; Zhou, M. Experimental characterization of the dynamic failure behavior of mortar under impact loading. J. Appl. Phys.
**2001**, 89, 2115–2123. [Google Scholar] [CrossRef] - Grote, D.L.; Park, S.W.; Zhou, M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. Int. J. Impact Eng.
**2001**, 25, 869–886. [Google Scholar] [CrossRef] - Jin, X.C.; Hou, C.; Fan, X. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs. Sci Rep.
**2017**, 7, 15305. [Google Scholar] [CrossRef] [PubMed] - Guo, Y.B.; Gao, G.F.; Jing, L. Response of high-strength concrete to dynamic compressive loading. Int. J. Impact Eng.
**2017**, 108, 114–135. [Google Scholar] [CrossRef] - Levi-Hevroni, D.; Kochavi, E.; Kofman, B. Experimental and numerical investigation on the dynamic increase factor of tensile strength in concrete. Int. J. Impact Eng.
**2018**, 114, 93–104. [Google Scholar] [CrossRef] - Zhou, J.; Chen, X.; Wu, L. Influence of free water content on the compressive mechanical behavior of cement mortar under high strain rate. Sadhana
**2011**, 36, 357–369. [Google Scholar] [CrossRef] - Quast, M.; Curbach, M. Concrete under biaxial dynamic compressive loading. Procedia Eng.
**2017**, 210, 24–31. [Google Scholar] [CrossRef] - Li, M.; Hao, H.; Shi, Y. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests. Constr. Build. Mater.
**2018**, 161, 84–93. [Google Scholar] [CrossRef] - Jurowski, K.; Grzeszczyk, S. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete. Materials
**2018**, 11, 477. [Google Scholar] [CrossRef] - Zhang, S.; Lu, Y.; Jiang, X. Inertial effect on concrete-like materials under dynamic direct tension. Int. J. Prot. Struct.
**2018**, 9, 377–396. [Google Scholar] [CrossRef] - Simo, J.C.; Ju, J.W. Strain- and stress-based continuum damage model—II. Comput aspects. Int. J. Solids Struct.
**1989**, 23, 841–869. [Google Scholar] [CrossRef] - Simo, J.C.; Ju, J.W. Strain- and stress-based continuum damage models—I. Formulation. Int. J. Solids Struct.
**1987**, 23, 821–840. [Google Scholar] [CrossRef] - Jin, L.; Zhang, R.; Dou, G.; Xu, J.; Du, X. Experimental and numerical study of reinforced concrete beams with steel fibers subjected to impact loading. Int. J. Damage Mech.
**2018**, 27, 1058–1083. [Google Scholar] [CrossRef] - Jin, L.; Ding, Z.; Li, D.; Du, X. Experimental and numerical investigations on the size effect of moderate high-strength reinforced concrete columns under small-eccentric compression. Int. J. Damage Mech.
**2018**, 27, 657–685. [Google Scholar] [CrossRef] - Li, W.S.; Wu, J.Y. A consistent and efficient localized damage model for concrete. Int. J. Damage Mech.
**2018**, 27, 541–567. [Google Scholar] [CrossRef] - Wardeh, M.A.; Toutanji, H.A. Parameter estimation of an anisotropic damage model for concrete using genetic algorithms. Int. J. Damage Mech.
**2017**, 26, 801–825. [Google Scholar] [CrossRef] - Yoo, D.Y.; Kang, S.T.; Banthia, N.; Yoon, Y.S. Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams. Int. J. Damage Mech.
**2017**, 26, 735–757. [Google Scholar] [CrossRef] - Liang, J.; Ren, X.; Li, J. A competitive mechanism driven damage-plasticity model for fatigue behavior of concrete. Int. J. Damage Mech.
**2016**, 25, 377–399. [Google Scholar] [CrossRef] - Georgin, J.F.; Reynouard, J.M. Modeling of structures subjected to impact: concrete behavior under high strain rate. Cem. Concr. Compos.
**2003**, 25, 131–143. [Google Scholar] [CrossRef] - Snozzi, L.; Caballero, A.; Molinari, J.F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading. Cem. Concr. Res.
**2011**, 41, 1130–1142. [Google Scholar] [CrossRef] - Snozzi, L.; Gatuingt, F.; Molinari, J.F. A meso-mechanical model for concrete under dynamic tensile and compressive loading. Int. J. Fract.
**2012**, 178, 179–194. [Google Scholar] [CrossRef] - Gatuingt, F.; Snozzi, L.; Molinari, J.F. Numerical determination of the tensile response and the dissipated fracture energy of concrete: role of the mesostructure and influence of the loading rate. Int. J. Numer. Anal. Methods Geomech.
**2013**, 37, 3112–3130. [Google Scholar] [CrossRef] - Gatuingt, F.; Snozzi, L.; Molinari, J.F. Determination of the Dynamic Tensile Response and Dissipated Fracture Energy of Concrete with a Cohesive Element Model. International Conference on Numerical Modeling Strategies for Sustainable Concrete Structures—SSCS 2012, June 2012, Aix en Provence, France. 2017. Available online: https://hal.archives-ouvertes.fr/hal-01624529 (accessed on 15 January 2019).
- Park, S.W.; Xia, Q.; Zhou, M. Dynamic behavior of concrete at high strain rates and pressures: II. numerical simulation. Int. J. Impact Eng.
**2001**, 25, 887–910. [Google Scholar] [CrossRef] - Zhou, X.Q.; Hao, H. Mesoscale modelling of concrete tensile failure mechanism at high strain rates. Comput. Struct.
**2008**, 86, 2013–2026. [Google Scholar] [CrossRef] - Zhou, X.Q.; Hao, H. Modelling of compressive behavior of concrete-like materials at high strain rate. Int. J. Solids Struct.
**2008**, 45, 4648–4661. [Google Scholar] [CrossRef] - Hao, H.; Hao, Y.; Li, Z.X. A numerical study of factors influencing high-speed impact tests of concrete material properties. In Proceedings of the 8th International Conference on Shock & Impact Loads on Structures, Adelaide, Australia, 2–4 December 2009; pp. 37–52. [Google Scholar]
- Hao, H.; Zhou, X.Q. Concrete material model for high rate dynamic analysis. In Proceedings of the Seventh International Conference on shock & impact loads on structures, Beijing, China, 17–19 October 2007; pp. 753–768. [Google Scholar]
- Cusatis, G. Strain-rate effects on concrete behavior. Int. J. Impact Eng.
**2011**, 38, 162–170. [Google Scholar] [CrossRef] - Wu, H.; Zhang, Q.; Huang, F. Experimental and numerical investigation on the dynamic tensile strength of concrete. Int. J. Impact Eng.
**2005**, 32, 605–617. [Google Scholar] [CrossRef] - Zhou, W.; Tang, L.; Liu, X. Mesoscopic simulation of the dynamic tensile behavior of concrete based on a rate-dependent cohesive model. Int. J. Impact Eng.
**2016**, 95, 165–175. [Google Scholar] [CrossRef] - Chen, X.; Wu, S.; Zhou, J. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Constr. Build. Mater.
**2013**, 47, 419–430. [Google Scholar] [CrossRef] - Peng, Y.J.; Liu, Y.H.; Pu, J.W.; Zhang, L. Application of base force element method to mesomechanics analysis for recycled aggregate concrete. Math Probl. Eng.
**2013**, 2013, 1–8. [Google Scholar] [CrossRef] - Peng, Y.J.; Pu, J.W. Micromechanical investigation on size effect of tensile strength for recycled aggregate concrete using BFEM. Int. J. Mech. Mater. Des.
**2016**, 12, 525–538. [Google Scholar] [CrossRef] - Peng, Y.J.; Chu, H.; Pu, J.W. Numerical simulation of recycled concrete using convex aggregate model and base force element method. Adv. Mater. Sci. Eng.
**2016**, 2016, 1–10. [Google Scholar] [CrossRef] - Peng, Y.J.; Dong, Z.L.; Peng, B.; Liu, Y.H. Base force element method (BFEM) on potential energy principle for elasticity problems. Int. J. Mech. Mater. Des.
**2011**, 7, 245–251. [Google Scholar] [CrossRef] - Walraven, J.C.; Reinhardt, H.W. Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading. Heron.
**1991**, 26, 26–35. [Google Scholar] - Du, X.L.; Jin, L.; Ma, G. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members. Int. J. Damage Mech.
**2013**, 22, 878–904. [Google Scholar] [CrossRef] - Jayasuriya, A.; Adams, M.P.; Bandelt, M.J. Understanding variability in recycled aggregate concrete mechanical properties through numerical simulation and statistical evaluation. Constr. Build. Mater.
**2018**, 178, 301–312. [Google Scholar] [CrossRef] - Nilsen, A.U.; Monteiro, P.J.M. Concrete: A three phase material. Cem. Concr. Res.
**1993**, 23, 147–151. [Google Scholar] [CrossRef] - Agioutantis, Z.G.; Stiakakis, C.; Kleftakis, S. Numerical simulation of the mechanical behavior of epoxy based mortars under compressive loads. Comput. Struct.
**2002**, 80, 2071–2084. [Google Scholar] [CrossRef] - Fakhari Tehrani, F.; Absi, J.; Allou, F. Heterogeneous numerical modeling of asphalt concrete through use of a biphasic approach: Porous matrix/inclusions. Comput. Mater. Sci.
**2013**, 69, 186–196. [Google Scholar] [CrossRef] - Du, X.L.; Jin, L.; Ma, G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale. Int. J. Impact Eng.
**2014**, 66, 5–17. [Google Scholar] [CrossRef] - Comité Euro-International du Béton. CEB-FIP Model Code 1990; Redwood Books: Trowbridge, Wiltshire, UK, 1993. [Google Scholar]
- Dilger, W.H.; Koch, R.; Kowalczyk, R. Ductility of plain and confined concrete under different strain rates. ACI J.
**1984**, 81, 73–81. [Google Scholar]

**Figure 9.**Stress–strain curve of concrete under dynamic uniaxial compressive stress at different strain rates.

**Figure 11.**The damage process of concrete specimen 1 under dynamic uniaxial compressive stress; (

**a**) $\dot{\epsilon}=0.001\text{}{\mathrm{s}}^{-1}$; (

**b**) $\dot{\epsilon}=1\text{}{\mathrm{s}}^{-1}$; (

**c**) $\dot{\epsilon}=10\text{}{\mathrm{s}}^{-1}$; (

**d**) $\dot{\epsilon}=100\text{}{\mathrm{s}}^{-1}$.

**Figure 12.**The failure pattern of concrete specimens under dynamic uniaxial compressive stress; (

**a**) specimen 1; (

**b**) specimen 2; (

**c**) specimen 3.

Mechanical Parameters | Cement Mortar | Interfacial Transition Zone (ITZ) | Aggregate |
---|---|---|---|

Density $\rho $ (kg/m^{3}) | 2100 | 1700 | 2700 |

Poisson’s ratio $\nu $ | 0.22 | 0.2 | 0.16 |

Strength (tensile/compressive) $\sigma $ (MPa) | 3.2/32 | 2.5/25 | 7/70 |

$\lambda $ | 0.25 | 0.25 | 0.80 |

$\beta $ | 0.85 | 0.65 | 0.90 |

$\gamma $ | 0.35 | 0.35 | 0.35 |

$\alpha $ | 0.3 | 0.3 | 0.3 |

${\eta}_{t}/{\eta}_{c}$ | 4/4 | 3/3 | 5/5 |

${\xi}_{t}/{\xi}_{c}$ | 10/10 | 10/10 | 10/10 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Peng, Y.; Wang, Q.; Ying, L.; Kamel, M.M.A.; Peng, H.
Numerical Simulation of Dynamic Mechanical Properties of Concrete under Uniaxial Compression. *Materials* **2019**, *12*, 643.
https://doi.org/10.3390/ma12040643

**AMA Style**

Peng Y, Wang Q, Ying L, Kamel MMA, Peng H.
Numerical Simulation of Dynamic Mechanical Properties of Concrete under Uniaxial Compression. *Materials*. 2019; 12(4):643.
https://doi.org/10.3390/ma12040643

**Chicago/Turabian Style**

Peng, Yijiang, Qing Wang, Liping Ying, Mahmoud M. A. Kamel, and Hongtao Peng.
2019. "Numerical Simulation of Dynamic Mechanical Properties of Concrete under Uniaxial Compression" *Materials* 12, no. 4: 643.
https://doi.org/10.3390/ma12040643