Exploiting Partial System Knowledge in Reinforcement Learning for Admission Control and Electricity Storage Optimization

When

17/01/2025    
2:00 pm-5:00 pm
Lucas Weber
Inria

Where

Inria Paris
48 rue Barrault, Paris, 75013

Event Type

This thesis exploits partial system knowledge to design more efficient reinforcement learning (RL) algorithms for three problems: admission control (1), electricity storage optimization (2), and the acceleration of bias function computation (3).
For (1), the system is modeled as an M/M/c/S queue with m job classes. We propose a model-based algorithm, named UCRL-AC, with a finite-time regret bound dominated by O(S\log T + \sqrt{mT \log T}), where T is the total running time. UCRL-AC exploits the queuing structure by learning the arrival rates.
For (2), we design an RL algorithm that minimizes energy and demand charges by controlling a battery. The knowledge of the battery dynamics allows an efficient offline exploration, which enables fast training with minimal data. The algorithm is tested on real-world data.
For (3), we show that for a fixed policy, the bias function computation can be accelerated through the knowledge of eigenvalues of the transition probability matrix.
Composition du jury:
  • Urtzi Ayesta, IRIT (rapporteur)
  • Giovanni Neglia, Centre Inria d’Université Côte d’Azur (rapporteur)
  • Johanne Cohen, LISN – Université Paris-Saclay (examinatrice)
  • Bruno Gaujal, Inria Grenoble (examinateur)
  • Alain Jean-Marie, Inria Montpellier (examinateur)
  • Lorenzo Maggi, NVIDIA (examinateur)
  • Ana Buši?, Inria Paris (directrice de thèse)
  • Jiamin Zhu, IFP Energies Nouvelles (co-encadrante de thèse)
  • Tristan Charrier, AMIAD (membre invité, superviseur DGA)