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A Systemic Threat

2 years

1st

Extrerne weather events

Critical change to Earth systems
Biodiversity loss and ecosystem colapse
\ 4 Natural resource shortages

G Misinformation and disinformation

Misinformation and disinformation

"FIMI demonstrates a growth of 30-50% in

hostile operations, with artificial
amplification networks, Al-generated
content, and increasingly autonomous
platforms, making disinformation faster,
more coordinated, and more
sophisticated.”

3rdFiMi

CopyCop

300+ nuovi siti web fittizi
9 falsi fact-checker (rete
TrueFact)
Uncensored-LLM-based
content generation

Media impersonification &
copycat news

Target: USA, NATO, UE,

Ucraina /
Goal: pro-Cremlino, anti-
occidentale




From Cybersecurity to Cognitive Security

Created by Lagot Design
from Noun Project

PHYSICAL CYBER COGNITIVE
SECURITY SECURITY SECURITY
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INFORMATION DISORDER AWARENESS

* Leveraging artificial
intelligence to analyze and
detect patterns in
disinformation.

* Explainable Al for
transparency and trust in
countermeasures.

+ Collecting and analyzing
publicly available data for
disinformation detection.

* Monitoring content across

multiple platforms and sources.
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SOCIAL
MEDIA
ANALYSIS

Protecting individuals and
institutions from cognitive
manipulation.

Safeguarding decision-making
processes from disinformation.

Identifying and tracking
disinformation campaigns on
social platforms.
Understanding the dynamics
of social network influence
and coordinated behaviours.




A Systematic Response
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On-Demand Monitoring & Configuration
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Monitoring Results Summary
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Impact Analysis
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Attribution
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Credibility Score of News Outlets
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Narratives / Events
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Narrative Analysis Example

\
~

@ s> mnsuns 04 Sep 2025 @

g @DissentWatch ]
04 Sep 2025 7:14 PM

NEW -Google and YouTube sign $45 million deal with Israel to run “Hasbara” ads, particularly related to
Gaza. The contr...From Disclose TVNEW -Google and YouTube sign $45 million deal with Israel to run
“Hasbara" ads, particularly related to Gaza. The contract with YouTube and Google's Display &amp; Video 360
ad platform explicitly describes the ad campaign as “Hasbara,” a Hebrew term meaning public relations or
propaganda. Read morel https://www.disclose.tv/id/el0OsSug0tm/ @disclosetvSource:
https://t.me/disclosetv/17537Discuss, share, promote &amp; more: https.//dissentwatch.com/boost/?
boost_post_id=1030367@DissentWatch

Show less ~

=] Google and YouTube signed a million-dollar deal with Israel to run
Hasbara advertisements, particularly related to Gaza
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Perspective Analysis
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Narrative Analysis Example

Israel, or Jewish people, is responsible for
Charlie Kirk’s death

Charlie Kirk was shot, and God’s
protection is invoked



Coordinated Behaviours Analysis
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Information Disorder Models Benchmarking

* Toxic Language Detection
* Hate Speech Detection

* Sentiment Analysis

* Propaganda Detection




Information Disorder Models Benchmarking

@® SHAP @ LIME
0,80

Are You Kidding Me, Ted Cruz? Don't Blame The
Police Office Who Admitted Killing Botham Jean? 0.80
FOX 26 asked Cruz to respond to his Democratic
midterm rival, Beto O’Rourke, who called for
officer Guyger to be fired.

PROPAGANDA

0,70

ACCURACY

0,60

Are You Kidding Me, Ted Cruz? Don't Blame The ° 1 ’ ’ ) ’
Police Office Who Admitted Killimg Botham Jean? HORBRFERINERED

FOX 26 asked Cruz to respond to his Democr@tic

midtern rlval, Beto O’'Rourke, who called for 889% | 75% | 66% | 62% | 60% | 57%
Officer Guyger to be fired.

... NO PROPAGANDA

S

0 1 2 3 4 5

ACCURACY DECREASING USING LIME AND SUB-C TECHNIQUE
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Fact-Checking / Claim Verification
Overall Workflow

{ Web Document Summarization Z Claim-focused Relation Extraction
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Fact-Checking / Claim Verification
Experimental Results

Dataset Used:

FEVER Dataset: A widely used dataset for claim verification, with claims labeled as SUPPORTS,
REFUTES, or NOT ENOUGH INFO.

Evaluation Focus: This study focused on binary classification (SUPPORTS vs. REFUTES) using a
subset of the FEVER Development dataset with 13,332 claims.

Baseline Comparisons:

PPL Method: Uses conditional perplexity scores to classify claims, leveraging pre-trained language
models.

Fine-Tuned Models: Includes models like BERT-Bft and XLNETfTt, which are fine-tuned for binary
classification tasks.




Experimental Results

Table 1. Accuracy and F1-Macro of the proposed method compared with the baselines.

Model |Accuracy (%)|F1l-macro (%)
BERT — Bp 52.18 38.82
XLNET} 49.18 48.42
PPLcpTo-xIL 73.67 T1:71
Ours 84.23 84.23

Table 2. Evaluation metrics of the proposed approach compared with results given by
considering only summaries, without extracting relations.

Fl-macro (%)
73.02
84.23

Accuracy (%)

77.33
84.23

Approach
Without relation extraction

With relation extraction




Limits

Scalability and Modality Coverage

The approach mainly targets textual evidence and does not scale to multimodal content
(images, videos, social signals).

Lack of Temporal Awareness
Evidence retrieval ignores timing, affecting reliability in fast-evolving scenarios.

Relation Extraction Issues

Missing or ambiguous relations lead to claim exclusion (~17% of data).

Closed LLM Dependency

Reliance on proprietary LLMs increases cost and reduces control.




Scalability and Modality Coverage

REASONING LAYER DECISION LAYER

THOUGHT: I need to . . . =)
ACTION: Tool or Delegation

ACTION INPUT: Query/Delegate
OBSERVATION: [. . .]

FINAL ANSWER:[...]

THOUGHT: I need to . .
ACTION: Tool or De1egation
ACTION INPUT: Query/De1egate
OBSERVATION: [. . .]

FINAL ANSWER:[...]

Agent 1

®

acision Agent 1 Final Output

First K equal
decisions
(Ke{1,..,D})




Preliminary Experimental Results

* RQ1: How do individual agents’ contributions affect the final outcome?

Agent Failures (%) Inconclusive (%)
Model Inconclusive Answers
Fact-Checking 11.82% 18.8%
Context Analyst R.08% 11.28% Multi-agent system 1 10.65%
Media-Bias Analyst 25.72% 37.59% Multi-agent system 2 8.89%
Public Sentiment Analyst 42.35% 91.73% Multi-agent system 3 1.8%
* RQ3: What is the relationship between
the number of agents and system
* RQ2: Does a multi- performance?
agent system
outperform a single Model Accuracy (%) F1l-Macro (%)

LLM and other

baselines in claim BERT — By 52.18 38.82
verification? XLNET 49.18 48.42
PPL pya.xl, 73.67 71.71

Multi-agent system 1 78.01 T7.53
Multi-agent system 2 78.T1 78.31
Multi-agent system 3 85.31 85.29
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Von der Leyen criticized for skirting EU
oversight .

The EU Commission may no longer bypass Parliament while pushing through
spending plans, top lawmaker Roberta Metsola has said
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The Commission claims that the EU must

massively mvest in its military, especally n Interpol refuses request to arrast Bosnian Serb leader
order to allocate up to €800 billion ($875
bilkon) in dedt and tax breaks for the bloc’s
military industrial complex. Brussals insists the
ReArm” militarization plan is aimed al ’
countering an alleged ‘Threat” from Russia, an Kiev commits new breaches of US-brokered energy
dea Moscow has dismessed as baseless. ceasefire - Russian MOD

EU state announces withdrawal from ICC

Under von der Leyen's plan, the EU governments have agreed to draw on
€150 billion m loans over the next five years 10 boost thesr maary spendng

‘Reciprocal’ duties, acton against ‘pathete’ EU: Key points
from Trump's global tariff announcement EEE
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Al-Generated Text Detection: CLAID

. CLAID - Contrastive Learning for Al Detection

. The key idea of our work is to rethink Al-generated text detection
not as a standard classification problem, but as a similarity
problem.

. Slamese neural network trained with contrastive learning

. The model Is trained so that:

o Al-Al pairs are close in the embedding space
o Human-Al pairs are far apart




Al-Generated Text Detection

i© e - 3
I " M
| ] ,
1 1
I ST s
: Training :
Phase 1: D! dataset |
— 1
% '
Prompt £ L
. P 1
Inversion = :
2 N . (= LLM
/5 Q ‘I:::i “_l‘-' (:“ '
o : /,(E;.-"";__;_;' J 1<Prompt-Category> )F/ <POS+Dept>
+, GEy _
I ’ " Grammatical
: ! ' Structures
, Prompt-Category 1 Y
| detection model ! (P, <Sentiment> >_ CE—
‘ F 5
. - {{ o )}

- - - -

> G

Sentiment
Original Analysis Instruction-Prompt

Response




Al-Generated Text Detection
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Al-Generated Text Detection

Table 6

Classification performance on unified datasets (Strategy 2).
Approach Accuracy  Precision  Recall  F1-Score
Decision Tree 0.83 0.84 0.83 0.83
K-Nearest Neighbors 0.86 0.86 0.86 0.86
Multinomial Naive Bayes 0.87 0.88 0.87 0.87
Passive Aggressive Classifier  0.94 0.95 0.94 0.94
SGD Classifier (Log Loss) 0.95 0.94 0.95 0.94
Logistic Regression 0.95 0.95 0.95 0.95
BERT 0.97 0.97 0.97 0.97
CLAID (our) 0.99 0.99 0.99 0.99

Table 7

Classification performance on the unified dataset per

domain.
Source Accuracy  Precision  Recall  F1-Score
HC3 0.99 0.99 0.99 0.99
DAIGT 1.00 1.00 1.00 1.00
OUTFOX  0.98 0.98 0.98 0.98

Table 8

Classification performance with varying training set sizes (Data
Efficiency Study).

Di Gisl, M., Fenza, G., Gallo, M., & Loia, V. (2025). Contrastive siamese network for detecting Al -
generated text across domains and models. Neurocomputing, 131983.

Training Set Size Accuracy  Precision  Recall  Fl-Score
10 % (1,260 pairs)  0.91 0.91 0.91 0.91
25 % (3,150 pairs) 0.95 0.95 0.95 0.95
50 % (6,300 pairs)  0.98 0.98 0.98 0.98

75 % (9,450 pairs)  0.98 0.98 0.98 0.98




Al- Generated Text Detectlon
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Credibility Scoring of News QOutlets

TEXT SCORE 20%

o Readability Score: The Flesch Reading Ease test evaluates the readability of the text.

o Grammar Score: The grammatical structure of all web page content is computed by analyzing sentence

structures.

o Typo Score: Similarity is computed between the input text and its corrected version generated by TextBlaj

AMOUNT OF BANNERS 10% A

o A multimodal LLaVA model (liuhaotian/llava-v1.5-7b) was used.

TRAFFIC SCORE 10%
o Open PageRank API.

CONTENT ANALYSIS THROUGH Al 60%
o Clickbait Headline Detection — christinacdl/XLM-RoBERTa-Clickbait-Detection-new — Accuracy 98%

o Propaganda Detection — cstnz/PropagandaDetection — Accuracy 90%

o Political Bias Detection — bucketre-search/politicalBiasBERT — Accuracy 72%

| V4

o Fake News Evaluation — amzab/roberta-fake-news-classification — Accuracy 99%
AUTHOR SCORE: not available yet




Experimentation Results — Newsguard

Correlation

FakeNewsCorpus dataset
81 domains
50 web pages for each domain
5 weeks for each domain, on
average

Spearman
correlation: 81%

Pearson
correlation: 84%.

MSCS has the following interpretation:
e 0 <MSCS< 39, the source is considered less

credible, so it is necessary to proceed with
extreme caution;

40 <MSCS < 59, the source is considered less
credible, so it is necessary to proceed with
caution;

« 60 <MSCS < 74, the source is credible, but with
some exceptions;

« 75 <MSCS < 99, the source is generally reliable;

« MSCS =100, the source is highly reliable.
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Countering Online Radicalization

Detecting & Reducing
Online Radicalization

Berjawi, Omran, et al. "Mitigating radicalization in recommender
systems by rewiring graph with deep reinforcement learning.” Online
Social Networks and Media 48 (2025): 100325.

Key takeaway: Radicalization can be
measured, forecasted, and actively
reduced through behavior-aware indicators
and adaptive recommender interventions.

Role of Influential Actors in
Opinion Dynamics

®.®®

Analyzing the Persuasive Strategies of Influencers and News Media on Social Media.
Omran Berjawi, Rida Khatoun and Giuseppe Fenza. To appear in the International
Conference on Computer Systems and Applications (AICCSA 2025).

Key takeaway: Influencers shape
polarization not only through network
position, but through adaptive rhetoric
aligned with audience behavior.
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From Debunking to Prebunking

Debunking

Debunking is a reactive strategy that aims to correct misinformation after it
has already spread, by identifying false or misleading claims and replacing
them with verified, accurate information.

Prebunking

Prebunking is a preventive strategy that aims to inoculate people against
misinformation before they are exposed to it, by warning them about common
manipulation technigues and misleading narratives.




Exploit Prediction Scoring System
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The EPSS Model

EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. It is designed from the ground up to make the best use of all of the
information available and it does this in five steps:

Exploit Prediction Scoring System
(EPSS)

= The EPSS Model 1. Collect as much vulnerability information as we can from a variety of sources

= Data and Statistics 2. Collect evidence of daily exploitation activity

m User Guide 3. Train a model: discover/learn the relationship between the vulnerability information and the exploitation activity
= EPSS Research and

- 4. Measure the performance of the model, tweak and repeat step 3 to optimize the model
Presentations

w Frequently Asked Questions
= Who is using EPSS?

m Open-source EPSS Tools

= API

u Related Exploit Research

u Blog

= Data Partners

5. 0n a daily basis: refresh the vulnerability information (step 1) and use the maodel (step 3) to produce daily estimates of the probability of exploitation in the next 30 days
for each published CVE.

We will walk through these steps below. For those wanting to know more, a detailed explanation of the background and rigor put into EPSS is covered in the latest
published EPSS paper [%.

Vulnerability Information

Collecting vulnerability information is all about gathering data that we hope will help us answer the question, "What makes a vulnerability more (or less) likely to be
exploited?" Luckily, we don't have to know the answer, nor do we have to estimate any weights for the data we collect. The modeling in step 3 (in combination with the
exploitation activity in step 2) will figure out how different sources of information help explain the exploitation activity we have observed. The more information we can
collect the better, as more detail and variety in the data may help the model discover more and more subtle patterns about which vulnerabilities are likely to be exploited.

The vulnerability information we collect:

= Vendor (CPE, via NVD)

w Age of the vulnerability (Days since CVE published in MITRE CVE list)

u References with categorical labels defining their content (MITRE CVE List, NVD)
u Normalized multiword expressions extracted from the description of the vulnerability (MITRE CVE List)



Cognitive Vulnerability Exploitation Score
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Prompt lterative Refinement
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Vulnerability Assessment
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From LLM Agents to Social Media Digital Twins

Goal: Understand how human-driven influence shapes collective opinion beyond algorithms.

1. What We Did (Recent Work: LLM Agents)

* Studied opinion dynamics in networks of LLM-driven agents.

* Showed bias amplification:
* Even a small fraction of biased agents shifts collective opinion.
* Leads to extremity convergence, not balanced consensus.

* Highlighted risks of deploying LLM agents in social simulations and decision-making.

2. What We Will Do (Future Research Agenda)

* Develop Social Media Digital Twins: Virtual replicas of real online platforms

* Key components:
* Graph-based social networks
®* LLM-driven user agents
* Platform-level behavioral and recommendation rules

Enable: Safe testing of interventions (e.g., recommender rewiring, influencer moderation)
Bridge computational social science, Al safety, and platform governance

Key takeaway: A unified experimental framework to study radicalization, influence, and Al-

ediated opinion dynamics before real-world deployment.




Conclusions

Shifting our focus to the prebunking area

Focus on Technology Transfer:
o Filing Patents
o Starting Pilots with National Institutions

Project Open Repositories
o Source Code (GitHub):
https://github.com/Information-Disorder-Awareness

o Models & Resources (Hugging Face):
https://huggingface.co/IDA-SERICS

References:

Ui
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https://huggingface.co/IDA-SERICS
https://scholar.google.com/citations?hl=it&user=0C3IjEIAAAAJ&view_op=list_works&sortby=pubdate
https://scholar.google.com/citations?hl=it&user=0C3IjEIAAAAJ&view_op=list_works&sortby=pubdate

SERICS

SECURITY AND RIGHTS IN THE CYBERSPACE

Merci!
Grazie!
Thank you!
Graclas!
Danke!
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