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Object Tracking Problem

Localization of an object in a proximity sensor network.

Each sensor node is assigned a unique identification number (ID).

The monitored region is a (flat or cyclic) 2D map.

The localization accuracy δ × µ is pre-assigned.

How to minimize the number of required IDs when considering the
detection range of each sensor?
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Object Tracking Problem (1D)

An object randomly appears on a line of length L.

Time is divided into descrete time slots of duration h.

At the beginning of each time slot, we want to determine the position of
the object, with upside precision δ.

▶ the system says it is located at 2δ, it means: in [2δ, 3δ)

▶ δ: tracking accuracy
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length 𝐿 with 3𝛿 < 𝐿 ≤ 4𝛿 (e.g., 𝑁 = 4)
object𝛿 2𝛿 3𝛿 4𝛿0

. . .
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Object Tracking Problem (1D)
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sensor

length 𝐿 with 3𝛿 < 𝐿 ≤ 4𝛿 (e.g., 𝑀 = 4)

report

𝛿 2𝛿 3𝛿 4𝛿0

Remote observer

. . .
object

detection range = 𝛿

A straightforward solution:
put one sensor at each position located δ, 2δ, . . . , ⌈L/δ⌉δ
each sensor detects objects to its left with detection range δ

each sensor reports the location of the detected object to a remote
observer

M := ⌈L/δ⌉ unique IDs are necessary for the M sensors, each of which
requires log2 M bits to represent.
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sensor

length 𝐿 with 3𝛿 < 𝐿 ≤ 4𝛿 (e.g., 𝑀 = 4)

report

𝛿 2𝛿 3𝛿 4𝛿0

Remote observer

. . .
object

detection range = 𝛿

Straightforward Protocol
M := ⌈L/δ⌉ unique IDs are necessary for the M sensors, each of which
requires log2 M bits to represent.

Time is divided into descrete time slots of duration h.
Assume the communication channel is with date rate R (bits/time-unit).
The straightforward protocol works whenever

log2 ⌈L/δ⌉ = log2 M ≤ Rh (∗)
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Object Tracking Problem (1D)

Straightforward Protocol
M := ⌈L/δ⌉ unique IDs are necessary for the M sensors, each of which
requires log2 M bits to represent.

Time is divided into descrete time slots of duration h.

Assume the communication channel is with date rate R (bits/time-unit).

The straightforward protocol works whenever

log2 ⌈L/δ⌉ = log2 M ≤ Rh (∗)

(∗) does not hold if L > δ2Rh

If the detection range > δ, the straightforward protocol seems a bit
lavish.
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Object Tracking Problem (1D)
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𝛿 2𝛿 3𝛿 4𝛿0

Remote observer

. . .

detection range = 𝛿

Some IDs may be reused to reduce the number of IDs.

Multiset Color Coding Problem
Assume the detection range is mδ, for m ∈ N, where δ is the tracking
accuracy. Find a set of k ≤ M IDs and select one ID for each sensor so that,
the combinations of m consecutive IDs for all intervals [(j− 1)δ, jδ] are all
distinct (distinguishable).

Objective: For given M and m, minimize the value k.
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Multiset Combinatorial Gray Codes:

Distinguishable Sequences
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Notation and Definitions
Let [k] := {1, 2, . . . , k}, a set of k colors (IDs).

Consider a sequence S = s0s1 · · · sM−1 in which si ∈ [k].

Let St(m) denote the multiset {st, st+1, . . . , st+m−1}.

Definition (Multiset Combinatorial Gray Codes)
m-distinguishable: multisets St(m), t ∈ {0, 1, . . . ,M−m}, are all distinct

cyclic m-distinguishable: multisets St(m) are all distinct for t ∈ ZM

⋆ Code symbols of successive m-blocks can differ by at most two
elements, multiplicity counting.

Example.
21133212 is 3-distinguishable, but not cyclic 3-distinguishable

111222333 is both 3-distinguishable and cyclic 3-distinguishable

C. Savage, “A survey of combinatorial Gray codes,” SIAM Review, vol. 39, no. 4, pp. 605–629, 1997.
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An Equivalent Problem
For given m and sequence length M, minimize the number of colors k.

⇕

For given m and color size k, maximize the sequence length M. The
maximum length is denoted by Mc

m(k) or Mm(k)

Proposition (Natural Upper Bounds)
For given positive integers m and k, one has

Mc
m(k) ≤

(
k + m− 1

m

)
and Mm(k) ≤

(
k + m− 1

m

)
+ m− 1.

Proof (for cyclic case).

St(m) = {1e1 , . . . , kek}, where es is the multiplicity of the element s

e1 + e2 + · · ·+ ek = m with each es ≥ 0

♯ of non-negative integral solutions for above is Hk
m =

(k+m−1
m

)
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Main Results
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Related Works

de Bruijn sequence: a cyclic sequence of length km in which every
m-tuples in [k]m occurs exactly once as a substring.

▶ m = 4, k = 2: 1111211221212222

Definition (Universal cycles for multisets, Mcycles)
An (m, k)-Mcycle is a cyclic m-distinguishable sequence S in which

every m-multiset of [k] appears exactly once as St(m) for some t.

Example. m = 3, k = 5:

1112335 2223441 3334552 4445113 5551224

N. G. de Bruijn, “A combinatorial problem,” Porc. Koninklijke Nederlandse Akademie V. Wetenschappen, vol 49, pp. 758–764, 1946.

G. Hurlbert, T. Johnson, and J. Zahl, “On universal cycles for multisets,” Discrete Math., vol. 309, pp. 5321–5327, 2009.
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Mcycles
Definition (Universal cycles for multisets, Mcycles)
An (m, k)-Mcycle is a cyclic m-distinguishable sequence S in which

every m-multiset of [k] appears exactly once as St(m) for some t.

Some facts:
An (m, k)-Mcycle is of length

(k+m−1
m

)
.

An (m, k)-Mcycle exists, then k
∣∣(k+m−1

m

)
A (2, k)-Mcycle is an Eulerian circuit of Kℓ

k (with loops)

A (3, k)-Mcycle exists for k|
(k+2

3

)
, i.e., k ≡ 1, 2 (mod 3)

11 © Nokia 2020
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Mcycles
Definition (Universal cycles for multisets, Mcycles)
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k (with loops)

A (3, k)-Mcycle exists for k|
(k+2

3

)
, i.e., k ≡ 1, 2 (mod 3)

Corollary (Hurlbert–Johnson–Zahl, 2009)
It follows from the results of Mcycles that

Mc
m(k) =

{(k+1
2

)
if m = 2 and k ≡ 1 (mod2),(k+2

3

)
if m = 3 and k ≡ 1, 2 (mod3).
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Main Results I
Theorem (–, 2024)
For the missing cases, we have

Mc
m(k) ≥

{(k+1
2

)
− k

2 if m = 2 and k ≡ 0 (mod 2),(k+2
3

)
− k

3 if m = 3 and k ≡ 0 (mod 3).

(m = 2)

12 © Nokia 2020
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1 2

4

3

5

6
1 1 3 3 2 2 4 4 5

6 4 3 5 2 6 6 1 5

C. S. Chen, Y.-H. Lo, W. S. Wong, and Y. Zhang, “Object tracking using multiset color coding”, in International Symposium on
Information Theory and Its Applications, Taipei, Taiwan, Nov. 2024, pp. 378–383.
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m(k) ≥

{(k+1
2

)
− k

2 if m = 2 and k ≡ 0 (mod 2),(k+2
3

)
− k

3 if m = 3 and k ≡ 0 (mod 3).

(m = 3)
By induction on k.

▶ k = 3: 111222333
▶ k = 6: 11122 23331 16631 55224 53532 44336 21414 62625 14365 55444 6665

Assume on [k − 3], it is of the form S′T ′

For [k], the obtained sequence is of the form WXYZ, where
▶ W = S′T ′

▶ X is obtained from T ′ by k − 5 7→ k − 2, k − 4 7→ k − 1, and k − 3 7→ k.
▶ Y and Z are two special patterns, according to the parity of k.

C. S. Chen, Y.-H. Lo, W. S. Wong, and Y. Zhang, “Object tracking using multiset color coding”, in International Symposium on
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Main Results I

Theorem (–, 2025+)
Suppose p is a prime and k is divided by p. Then

Mc
p(k) ≤

(
k + p− 1

p

)
−k

p
.

Corollary (–, 2025+)
For the missing cases, we have

Mc
m(k) =

{(k+1
2

)
− k

2 if m = 2 and k ≡ 0 (mod 2),(k+2
3

)
− k

3 if m = 3 and k ≡ 0 (mod 3).

C. S. Chen, Y.-H. Lo, W. S. Wong, and Y. Zhang, “Object tracking using multiset color coding”, in International Symposium on
Information Theory and Its Applications, Taipei, Taiwan, Nov. 2024, pp. 378–383.

C. S. Chen, W. S. Wong, Y.-H. Lo, and T.-L. Wong, “Multiset combinatorial Gray codes with application to proximity sensor
networks,” arXiv:2410.15428
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Main Results I

Theorem (–, 2025+)
Suppose p is a prime and k is divided by p. Then

Mc
p(k) ≤

(
k + p− 1

p

)
−k

p
.

Proof Sketch.

Fix an element a ∈ [k].

For any multiset A, let φa(A) = ♯ of a’s in A

1 S is a longest cyclic p-distinguishable sequence, |S| = M.
▶

∑M−1
t=0 φa(Sp(t)) = p · (♯ of a’s in S)

2 Ba,i = collection of all p-multisets containing exactly (p− i) a’s
▶

∑
A∈Ba,i

φa(A) = (p− i)Hk−1
i , a multiple of p except when i = 1

▶ p ̸
∣∣∣∑p−1

i=0
∑

A∈Ba,i
φa(A)

⇒ S can not include all p-multisets of [k] containing at least one a
Yuan-Hsun Lo (NPTU) MCGC & Ucycles 2025 TMS Annual Meeting 17 / 29



Main Results II: Synthetic Construction
Theorem (–, 2025+)
Let S be a cyclic m1-distinguishable sequence on k1 colors of length M1 and T
a cyclic m2-distinguishable sequence on k2 colors of length M2. If mi|Mi and
gcd(d,Mi/mid) = 1 for i = 1, 2, where d = gcd(M1/m1,M2/m2) ≥ 2, then
there exists a cyclic (m1 + m2)-distinguishable sequence with k1 + k2 colors
of length M1M2

d ( 1
m1

+ 1
m2
).

Example.
S = 11︸︷︷︸

α0

33︸︷︷︸
α1

52︸︷︷︸
α2

41︸︷︷︸
α3

23︸︷︷︸
α4

45︸︷︷︸
α5

T = 666︸︷︷︸
β0

777︸︷︷︸
β1

888︸︷︷︸
β2

999︸︷︷︸
β3

000︸︷︷︸
β4

668︸︷︷︸
β5

800︸︷︷︸
β6

796︸︷︷︸
β7

807︸︷︷︸
β8

799︸︷︷︸
β9

.

S× T = α0β0α1β1α2β2α3β3α4β4α5β5 α0β6α1β7α2β8α3β9α4β0α5β1

α0β2α1β3α2β4α3β5α4β6α5β7 α0β8α1β9α2β0α3β1α4β2α5β3

α0β4α1β5α2β6α3β7α4β8α5β9.
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Main Results II: Synthetic Construction

Theorem (–, 2025+)
Let S be a cyclic m1-distinguishable sequence on k1 colors of length M1 and T
a cyclic m2-distinguishable sequence on k2 colors of length M2. If mi|Mi and
gcd(d,Mi/mid) = 1 for i = 1, 2, where d = gcd(M1/m1,M2/m2) ≥ 2, then
there exists a cyclic (m1 + m2)-distinguishable sequence with k1 + k2 colors
of length M1M2

d ( 1
m1

+ 1
m2
).

Theorem (–, 2025+)
For any m and k, by viewing Mc

m(k) and Mm(k) as functions of k, one has

Mc
m(k) = θ(km) and Mm(k) = θ(km).
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2D Multiset Combinatorial Gray Codes

2D color mapping Φ : ZM × ZN → [k]

coding window size: m× n

For (x0, y0) ∈ ZM × ZN , define a multiset

Sm,n(x0, y0) := {Φ(x0 + i, y0 + j) : 0 ≤ i < m, 0 ≤ j < n}.

Definition
The color mapping Φ is called

(m, n)-distinguishable if the multisets Sm,n(x0, y0) are all distinct for
0 ≤ x0 < M − m and 0 ≤ y0 < N − n

cyclic (m, n)-distinguishable if the multisets Sm,n(x0, y0) are all distinct
for (x0, y0) ∈ ZM × ZN .

Objective: given M,N,m, n, minimize k ←− KM,N(m, n) or Kc
M,N(m, n)

Yuan-Hsun Lo (NPTU) MCGC & Ucycles 2025 TMS Annual Meeting 19 / 29
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Product Code
S = s0s1 · · · sM−1 in which si ∈ [k]

T = t0t1 · · · tN−1 in which ti ∈ [h]

Define Φ(x, y) = (sx, ty), ∀(x, y) ∈ ZM × ZN .

Proposition
The color mapping Φ is (cyclic) (m, n)-distinguishable if S is (cyclic)
m-distinguishable and T is (cyclic) n-distinguishable.

KM,N(m, n) ≤ KM(m) · KN(n) and Kc
M,N(m, n) ≤ Kc

M(m) · Kc
N(n)

13 © Nokia 2020
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Main Result III: color-coding gain
The number of bits to represent an ID :

in “straightforward protocol”, it is log2 MN
in “multiset combinatorial Gray coding protocol”, it is log2 KM,N(m, n)

Define the color-coding gain as

RM,N(m, n) := lim
M,N→∞

log2 KM,N(m, n)
log2 MN

.

Theorem (–, 2025+)
It holds that

1
mn
≤ RM,N(m, n) ≤ log2 k + log2 h

m log2 k + n log2 h
,

where k = KM(m) and h = KN(n). In particular, when m = n, one has

1
m2 ≤ RM,N(m,m) ≤ 1

m
.
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Main Result III: color-coding gain

Let k = KM(m) and h = KN(n). Then,

1
mn
≤ RM,N(m, n) ≤ log2 k + log2 h

m log2 k + n log2 h
.

Proof.
1 ▶ (M − m + 1)(N − n + 1) ≤ Hk

mn =
(k+mn−1

mn

)
⇒ MN ≤ kmn

(mn)!
▶ Apply Stirling’s approximation formula.

2 ▶ Product Code: KM,N(m, n) ≤ KM(m) · KN(n)

▶
log2 KM,N(m, n)

log2 MN
≤ log2 KM(m) + log2 KN(n)

log2 M + log2 N
▶ Mm(k) = θ(km)⇒ M ≈ km and N ≈ hn
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Concluding Remarks
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Remark 1: Universal Cycles

Definition (Universal cycles, Ucycles)
An (m, k)-Ucycle is a cyclic m-distinguishable sequence S on [k] in which

1 there is no repeated elements in any St(m), and
2 every m-subset of [k] appears exactly once as St(m) for some t.

Some facts:

A (k,m)-Ucycle is of length
(k

m

)
.

A (k,m)-Ucycle exists, then m
∣∣(k−1

m−1

)
Conjecture
For every m ∈ N, there exists no ∈ N such that for all k ≥ no, there exists an
(m, k)-Ucycle whenever m divides

(k−1
m−1

)
.

F. Chung, P. Diaconis, and R. Graham, “Universal cycles for combinatorial structures,” Discrete Math., vol. 110, pp. 43–59, 1992.
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Remark 1: Universal Cycles

Theorem (Glock–Joos–Kühn–Osthus, 2020)
For every m ∈ N, there exists no ∈ N such that for all k ≥ no, there exists an
(m, k)-Ucycle whenever m divides

(k−1
m−1

)
.

This theorem is proved by a probabilistic method.

Some constructive results can be found in:
▶ Chung–Diaconis–Graham (1992): m = 2
▶ Jackson (1993): m = 3, partial m = 4, 5
▶ Hurlbert (1994): m = 3, 4, 6 when gcd(m, k) = 1.

S. Glock, F. Joos, D. Kühn, and D. Osthus, “Euler tours in hypergraphs,” Combinatorica, vol. 40, pp. 679–690, 2020.

F. Chung, P. Diaconis, and R. Graham, “Universal cycles for combinatorial structures,” Discrete Math., vol. 110, pp. 43–59, 1992.

B. W. Jackson, “Universal cycles of k-subsets and k-permutations,” Discrete Math., vol. 117, pp. 141–150, 1993.

G. Hurlbert, “On universal cycles for k-subsets of an n-set,” SIAM J. Discrete Math., vol. 7, 598–604, 1994.
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Remark 2: Higher Dimensional Extension
This concept was extended to d-dimension for any d ≥ 2:

Φ : Zd
M → [k]

the window size: md

Theorem (Chen–Keevash–Kennedy–de Panafieu–Vetta (2024))
Fix a dimension d ≥ 2 and the number of colors k of the form bd + 1 for some
b ≥ 1. For any window size m multiple of 2(k − 1), there exists a cyclic
(m)d-distinguishable integer lattice Zd

M with

M ∼ C1/d
k · mk−1 where Ck =

(
2

k − 1

)k−1

.

When d = 2⇒ M ∼
(√

2
k−1 m

)k−1

Product Code: M ∼ (
√

k)m >
(

1
2q · m

)(k−1)q
, when set m = 2(k − 1)q

C. S. Chen, P. Keevash, S. Kennedy, É. de Panafieu, and A. Vetta, “Robot positioning using torus packing for multisets,” 51st
International Colloquium on Automata, Languages, and Programming (ICALP), 2024.
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Conclusion

Formulate the problem of 1D and 2D multiset combinatorial Gray codes

General upper bounds on the grid size

For 1D multiset combinatorial Gray codes
▶ Mc

p(k) =
(k+p−1

p

)
− k

p for any prime p and integer k with p|k
▶ Exact values of Mc

2(k) and Mc
3(k)

▶ Mc
m(k) = θ(km)

For 2D multiset combinatorial Gray codes
▶ Product Code

▶ The color-coding gain has
1

m2 ≤ RM,N(m,m) ≤ 1
m
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Future and Ongoing Works

1 For 1D case
▶ Optimal constructions for (cyclic) m-distinguishable sequences, for

m ≥ 4.
▶ For any any prime p and integer k with p|k, is Mc

p(k) =
(k+p−1

p

)
− k

p ?
▶ Any other constructive methods for universal cycles?
▶ The sufficient condition of the existence of an Mcycle is necessary?

2 For 2D case
▶ Find a multiset combinatorial Gray code such thatRM,N(m,m) =

1
m2

▶ Any optimal construction?

3 Extend our results on 1D and 2D grids to higher dimensional cases.
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Thank you for your listening
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