Multiset Combinatorial Gray Codes and Universal Cycles

Yuan-Hsun Lo

Department of Applied Mathematics National Pingtung University

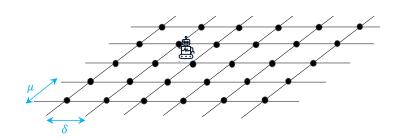
2025 TMS Annual Meeting

Joint with C. S. Chen (Nokia Bell Labs), W. S. Wong (CUHK), and T.-L. Wong (NSYSU)

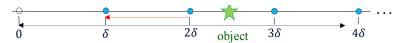
Outline

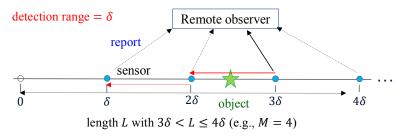
- Background and Motivation
- 2 Multiset Combinatorial Gray Codes: distinguishable sequences
- Main Results
 - 1D: Direct Construction
 - 1D: Synthetic Construction
 - 2D: Color Coding Gain
- 4 Concluding Remarks

- Localization of an object in a *proximity sensor network*.
- Each sensor node is assigned a unique identification number (ID).
- The monitored region is a (flat or cyclic) 2D map.
- The localization accuracy $\delta \times \mu$ is pre-assigned.
- How to minimize the number of required IDs when considering the detection range of each sensor?



- An object randomly appears on a line of length *L*.
- Time is divided into descrete time slots of duration h.
- At the beginning of each time slot, we want to determine the position of the object, with upside precision δ .
 - the system says it is located at 2δ , it means: in $[2\delta, 3\delta)$
 - δ : tracking accuracy

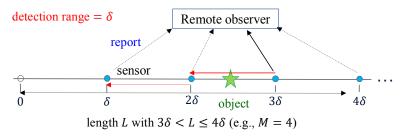




A straightforward solution:

- put one sensor at each position located $\delta, 2\delta, \dots, \lceil L/\delta \rceil \delta$
- ullet each sensor detects objects to its left with detection range δ
- each sensor reports the location of the detected object to a remote observer

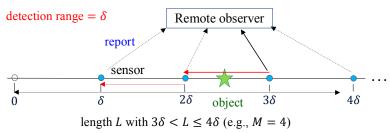
 $M := \lceil L/\delta \rceil$ unique IDs are necessary for the M sensors, each of which requires $\log_2 M$ bits to represent.



A straightforward solution:

- put one sensor at each position located $\delta, 2\delta, \dots, \lceil L/\delta \rceil \delta$
- ullet each sensor detects objects to its left with detection range δ
- each sensor reports the location of the detected object to a remote observer

 $M := \lfloor L/\delta \rfloor$ unique IDs are necessary for the M sensors, each of which requires $\log_2 M$ bits to represent.



Straightforward Protocol

 $M := \lceil L/\delta \rceil$ unique IDs are necessary for the M sensors, each of which requires $\log_2 M$ bits to represent.

- Time is divided into descrete time slots of duration h.
- Assume the communication channel is with date rate *R* (bits/time-unit).
- The straightforward protocol works whenever

$$\log_2 \lceil L/\delta \rceil = \log_2 M \le Rh \tag{*}$$

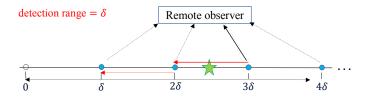
Straightforward Protocol

 $M := \lceil L/\delta \rceil$ unique IDs are necessary for the M sensors, each of which requires $\log_2 M$ bits to represent.

- Time is divided into descrete time slots of duration h.
- Assume the communication channel is with date rate *R* (bits/time-unit).
- The straightforward protocol works whenever

$$\log_2 \lceil L/\delta \rceil = \log_2 M \le Rh \tag{*}$$

- (*) does not hold if $L > \delta 2^{Rh}$
- If the detection range $> \delta$, the straightforward protocol seems a bit lavish.

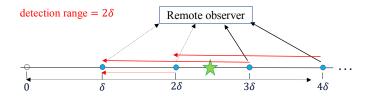


Some IDs may be reused to reduce the number of IDs.

Multiset Color Coding Problem

Assume the detection range is $m\delta$, for $m \in \mathbb{N}$, where δ is the tracking accuracy. Find a set of $k \leq M$ IDs and select one ID for each sensor so that, the combinations of m consecutive IDs for all intervals $[(j-1)\delta, j\delta]$ are all distinct (distinguishable).

Objective: For given M and m, minimize the value k.

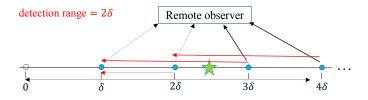


Some IDs may be reused to reduce the number of IDs.

Multiset Color Coding Problem

Assume the detection range is $m\delta$, for $m \in \mathbb{N}$, where δ is the tracking accuracy. Find a set of $k \leq M$ IDs and select one ID for each sensor so that, the combinations of m consecutive IDs for all intervals $[(j-1)\delta, j\delta]$ are all distinct (distinguishable).

Objective: For given M and m, minimize the value k.

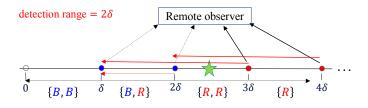


• Some IDs may be reused to reduce the number of IDs.

Multiset Color Coding Problem

Assume the detection range is $m\delta$, for $m \in \mathbb{N}$, where δ is the tracking accuracy. Find a set of $k \leq M$ IDs and select one ID for each sensor so that, the combinations of m consecutive IDs for all intervals $[(j-1)\delta, j\delta]$ are all distinct (distinguishable).

Objective: For given M and m, minimize the value k.

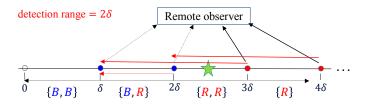


• Some IDs may be reused to reduce the number of IDs.

Multiset Color Coding Problem

Assume the detection range is $m\delta$, for $m \in \mathbb{N}$, where δ is the tracking accuracy. Find a set of $k \leq M$ IDs and select one ID for each sensor so that, the combinations of m consecutive IDs for all intervals $[(j-1)\delta, j\delta]$ are all distinct (distinguishable).

Objective: For given M and m, minimize the value k.

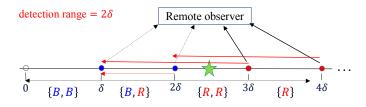


• Some IDs may be reused to reduce the number of IDs.

Multiset Color Coding Problem

Assume the detection range is $m\delta$, for $m \in \mathbb{N}$, where δ is the tracking accuracy. Find a set of $k \leq M$ IDs and select one ID for each sensor so that, the combinations of m consecutive IDs for all intervals $[(j-1)\delta, j\delta]$ are all distinct (distinguishable).

Objective: For given M and m, minimize the value k.



• Some IDs may be reused to reduce the number of IDs.

Multiset Color Coding Problem

Assume the detection range is $m\delta$, for $m \in \mathbb{N}$, where δ is the tracking accuracy. Find a set of $k \leq M$ IDs and select one ID for each sensor so that, the combinations of m consecutive IDs for all intervals $[(j-1)\delta, j\delta]$ are all distinct (distinguishable).

Objective: For given M and m, minimize the value k.

Multiset Combinatorial Gray Codes: Distinguishable Sequences

Notation and Definitions

- Let $[k] := \{1, 2, ..., k\}$, a set of k colors (IDs).
- Consider a sequence $S = s_0 s_1 \cdots s_{M-1}$ in which $s_i \in [k]$.
- Let $S_t(m)$ denote the **multiset** $\{s_t, s_{t+1}, \ldots, s_{t+m-1}\}$.

Definition (Multiset Combinatorial Gray Codes)

- *m*-distinguishable: multisets $S_t(m)$, $t \in \{0, 1, ..., M m\}$, are all distinct
- cyclic *m*-distinguishable: multisets $S_t(m)$ are all distinct for $t \in \mathbb{Z}_M$
- * Code symbols of successive *m*-blocks can differ by at most two elements, multiplicity counting.

Example.

- 21133212 is 3-distinguishable, but not cyclic 3-distinguishable
- 111222333 is both 3-distinguishable and cyclic 3-distinguishable

C. Savage, "A survey of combinatorial Gray codes," SIAM Review, vol. 39, no. 4, pp. 605–629, 1997.

Notation and Definitions

- Let $[k] := \{1, 2, ..., k\}$, a set of k colors (IDs).
- Consider a sequence $S = s_0 s_1 \cdots s_{M-1}$ in which $s_i \in [k]$.
- Let $S_t(m)$ denote the **multiset** $\{s_t, s_{t+1}, \ldots, s_{t+m-1}\}$.

Definition (Multiset Combinatorial Gray Codes)

- *m*-distinguishable: multisets $S_t(m)$, $t \in \{0, 1, ..., M-m\}$, are all distinct
- cyclic *m*-distinguishable: multisets $S_t(m)$ are all distinct for $t \in \mathbb{Z}_M$
- ★ Code symbols of successive *m*-blocks can differ by at most two elements, multiplicity counting.

Example.

- 21133212 is 3-distinguishable, but not cyclic 3-distinguishable
- 111222333 is both 3-distinguishable and cyclic 3-distinguishable

◆□▶◆□▶◆■▶◆■▶ ■ 900

An Equivalent Problem

For given m and sequence length M, minimize the number of colors k.

For given m and color size k, maximize the sequence length M. The maximum length is denoted by $M_m^c(k)$ or $M_m(k)$

Proposition (Natural Upper Bounds)

For given positive integers m and k, one has

$$M_m^c(k) \le {k+m-1 \choose m}$$
 and $M_m(k) \le {k+m-1 \choose m} + m-1$.

Proof (for cyclic case).

- $S_t(m) = \{1^{e_1}, \dots, k^{e_k}\}$, where e_s is the multiplicity of the element s
- $e_1 + e_2 + \cdots + e_k = m$ with each $e_s \ge 0$
- \sharp of non-negative integral solutions for above is $H_m^k = \binom{k+m-1}{m}$

An Equivalent Problem

For given m and sequence length M, minimize the number of colors k.

For given m and color size k, maximize the sequence length M. The maximum length is denoted by $M_m^c(k)$ or $M_m(k)$

Proposition (Natural Upper Bounds)

For given positive integers m and k, one has

$$M_m^c(k) \le {k+m-1 \choose m}$$
 and $M_m(k) \le {k+m-1 \choose m} + m-1$.

Proof (for cyclic case).

- $S_t(m) = \{1^{e_1}, \dots, k^{e_k}\}$, where e_s is the multiplicity of the element s
- $e_1 + e_2 + \cdots + e_k = m$ with each $e_s \ge 0$
- \sharp of non-negative integral solutions for above is $H_m^k = \binom{k+m-1}{m}$

Related Works

• de Bruijn sequence: a cyclic sequence of length k^m in which every m-tuples in $[k]^m$ occurs exactly once as a substring.

m = 4, k = 2: 1111211221212222

Definition (Universal cycles for multisets, Mcycles)

An (m, k)-Mcycle is a cyclic m-distinguishable sequence S in which

• every *m*-multiset of [k] appears exactly once as $S_t(m)$ for some t

Example. m = 3, k = 5:

1112335 2223441 3334552 4445113 5551224

N. G. de Bruijn, "A combinatorial problem," Porc. Koninklijke Nederlandse Akademie V. Wetenschappen, vol 49, pp. 758-764, 1946.

G. Hurlbert, T. Johnson, and J. Zahl, "On universal cycles for multisets," Discrete Math., vol. 309, pp. 5321–5327, 2009,

Related Works

• de Bruijn sequence: a cyclic sequence of length k^m in which every m-tuples in $[k]^m$ occurs exactly once as a substring.

m = 4, k = 2: 1111211221212222

Definition (Universal cycles for multisets, Mcycles)

An (m, k)-Mcycle is a cyclic m-distinguishable sequence S in which

• every m-multiset of [k] appears exactly once as $S_t(m)$ for some t.

Example. m = 3, k = 5:

1112335 2223441 3334552 4445113 5551224

N. G. de Bruijn, "A combinatorial problem," Porc. Koninklijke Nederlandse Akademie V. Wetenschappen, vol 49, pp. 758-764, 1946.

G. Hurlbert, T. Johnson, and J. Zahl, "On universal cycles for multisets," Discrete Math., vol. 309, pp. 5321-5327, 2009.

Mcycles

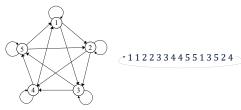
Definition (Universal cycles for multisets, Mcycles)

An (m, k)-Mcycle is a cyclic m-distinguishable sequence S in which

• every *m*-multiset of [k] appears exactly once as $S_t(m)$ for some t.

Some facts:

- An (m, k)-Mcycle is of length $\binom{k+m-1}{m}$.
- An (m, k)-Mcycle exists, then $k | {k+m-1 \choose m}$
- A (2, k)-Mcycle is an Eulerian circuit of K_k^{ℓ} (with loops)
- A (3, k)-Mcycle exists for $k \mid {k+2 \choose 3}$, i.e., $k \equiv 1, 2 \pmod{3}$



Mcycles

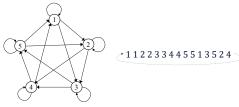
Definition (Universal cycles for multisets, Mcycles)

An (m, k)-Mcycle is a cyclic m-distinguishable sequence S in which

• every *m*-multiset of [k] appears exactly once as $S_t(m)$ for some t.

Some facts:

- An (m, k)-Mcycle is of length $\binom{k+m-1}{m}$.
- An (m, k)-Mcycle exists, then $k | {k+m-1 \choose m}$
- A (2, k)-Mcycle is an Eulerian circuit of K_k^{ℓ} (with loops)
- A (3, k)-Mcycle exists for $k | {k+2 \choose 3}$, i.e., $k \equiv 1, 2 \pmod{3}$



Mcycles

Definition (Universal cycles for multisets, Mcycles)

An (m, k)-Mcycle is a cyclic m-distinguishable sequence S in which

• every *m*-multiset of [k] appears exactly once as $S_t(m)$ for some t.

Some facts:

- An (m, k)-Mcycle is of length $\binom{k+m-1}{m}$.
- An (m,k)-Mcycle exists, then $k | \binom{k+m-1}{m}$
- A (2, k)-Mcycle is an Eulerian circuit of K_k^{ℓ} (with loops)
- A (3, k)-Mcycle exists for $k | {k+2 \choose 3}$, i.e., $k \equiv 1, 2 \pmod{3}$

Corollary (Hurlbert–Johnson–Zahl, 2009)

It follows from the results of Mcycles that

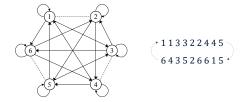
$$M_m^c(k) = \begin{cases} \binom{k+1}{2} & \text{if } m = 2 \text{ and } k \equiv 1 \pmod{2}, \\ \binom{k+2}{3} & \text{if } m = 3 \text{ and } k \equiv 1, 2 \pmod{3}. \end{cases}$$

Theorem (-, 2024)

For the missing cases, we have

$$M_m^c(k) \ge \begin{cases} {k+1 \choose 2} - \frac{k}{2} & \text{if } m = 2 \text{ and } k \equiv 0 \pmod{2}, \\ {k+2 \choose 3} - \frac{k}{3} & \text{if } m = 3 \text{ and } k \equiv 0 \pmod{3}. \end{cases}$$

(m=2)



C. S. Chen, Y.-H. Lo, W. S. Wong, and Y. Zhang, "Object tracking using multiset color coding", in *International Symposium on Information Theory and Its Applications*, Taipei, Taiwan, Nov. 2024, pp. 378–383.

Theorem (-, 2024)

For the missing cases, we have

$$M_m^c(k) \ge \begin{cases} {k+1 \choose 2} - \frac{k}{2} & \text{if } m = 2 \text{ and } k \equiv 0 \pmod{2}, \\ {k+2 \choose 3} - \frac{k}{3} & \text{if } m = 3 \text{ and } k \equiv 0 \pmod{3}. \end{cases}$$

$$(m=3)$$

- By induction on *k*.
 - k = 3: 111222333
 - ► *k* = 6: 11122 23331 16631 55224 53532 44336 21414 62625 14365 55444 6665
- Assume on [k-3], it is of the form S'T'
- For [k], the obtained sequence is of the form WXYZ, where
 - ightharpoonup W = S'T'
 - ► *X* is obtained from T' by $k 5 \mapsto k 2$, $k 4 \mapsto k 1$, and $k 3 \mapsto k$.
 - ▶ Y and Z are two special patterns, according to the parity of k.

C. S. Chen, Y.-H. Lo, W. S. Wong, and Y. Zhang, "Object tracking using multiset color coding", in *International Symposium on Information Theory and Its Applications*, Taipei, Taiwan, Nov. 2024, pp. 378–383.

Theorem (-, 2025+)

Suppose p is a prime and k is divided by p. Then

$$M_p^c(k) \le {k+p-1 \choose p} - \frac{k}{p}.$$

Corollary (-, 2025+)

For the missing cases, we have

$$M_m^c(k) = \begin{cases} \binom{k+1}{2} - \frac{k}{2} & \text{if } m = 2 \text{ and } k \equiv 0 \pmod{2}, \\ \binom{k+2}{3} - \frac{k}{3} & \text{if } m = 3 \text{ and } k \equiv 0 \pmod{3}. \end{cases}$$

C. S. Chen, Y.-H. Lo, W. S. Wong, and Y. Zhang, "Object tracking using multiset color coding", in *International Symposium on Information Theory and Its Applications*, Taipei, Taiwan, Nov. 2024, pp. 378–383.

C. S. Chen, W. S. Wong, Y.-H. Lo, and T.-L. Wong, "Multiset combinatorial Gray codes with application to proximity sensor networks," arXiv:2410.15428

Theorem (-, 2025+)

Suppose p is a prime and k is divided by p. Then

$$M_p^c(k) \le {k+p-1 \choose p} - \frac{k}{p}.$$

Proof Sketch.

- Fix an element $a \in [k]$.
- For any multiset A, let $\varphi_a(A) = \sharp$ of a's in A
- S is a longest cyclic p-distinguishable sequence, |S| = M.
- ② $\mathcal{B}_{a,i}$ = collection of all *p*-multisets containing exactly (p-i) *a*'s
 - $ightharpoonup \sum_{A \in \mathcal{B}_{a,i}} \varphi_a(A) = (p-i)H_i^{k-1}$, a multiple of p except when i=1
- \Rightarrow S can not include all p-multisets of [k] containing at least one a

Main Results II: Synthetic Construction

Theorem (-, 2025+)

Let S be a cyclic m_1 -distinguishable sequence on k_1 colors of length M_1 and T a cyclic m_2 -distinguishable sequence on k_2 colors of length M_2 . If $m_i|M_i$ and $\gcd(d, M_i/m_id) = 1$ for i = 1, 2, where $d = \gcd(M_1/m_1, M_2/m_2) \geq 2$, then there exists a cyclic $(m_1 + m_2)$ -distinguishable sequence with $k_1 + k_2$ colors of length $\frac{M_1M_2}{d}(\frac{1}{m_1} + \frac{1}{m_2})$.

Example.

$$\bullet S = \underbrace{11}_{\alpha_0} \underbrace{33}_{\alpha_1} \underbrace{52}_{\alpha_2} \underbrace{41}_{\alpha_3} \underbrace{23}_{\alpha_4} \underbrace{45}_{\alpha_5}$$

$$T = \underbrace{666}_{\beta_0} \underbrace{777}_{\beta_1} \underbrace{888}_{\beta_2} \underbrace{999}_{\beta_3} \underbrace{000}_{\beta_4} \underbrace{668}_{\beta_5} \underbrace{800}_{\beta_6} \underbrace{796}_{\beta_7} \underbrace{807}_{\beta_8} \underbrace{799}_{\beta_9}.$$

$$S \times T = \alpha_0 \beta_0 \alpha_1 \beta_1 \alpha_2 \beta_2 \alpha_3 \beta_3 \alpha_4 \beta_4 \alpha_5 \beta_5 \qquad \alpha_0 \beta_6 \alpha_1 \beta_7 \alpha_2 \beta_8 \alpha_3 \beta_9 \alpha_4 \beta_0 \alpha_5 \beta_1$$

$$\alpha_0 \beta_2 \alpha_1 \beta_3 \alpha_2 \beta_4 \alpha_3 \beta_5 \alpha_4 \beta_6 \alpha_5 \beta_7 \qquad \alpha_0 \beta_8 \alpha_1 \beta_9 \alpha_2 \beta_0 \alpha_3 \beta_1 \alpha_4 \beta_2 \alpha_5 \beta_3$$

$$\alpha_0 \beta_4 \alpha_1 \beta_5 \alpha_2 \beta_6 \alpha_3 \beta_7 \alpha_4 \beta_8 \alpha_5 \beta_9.$$

Main Results II: Synthetic Construction

Theorem (-, 2025+)

Let S be a cyclic m_1 -distinguishable sequence on k_1 colors of length M_1 and T a cyclic m_2 -distinguishable sequence on k_2 colors of length M_2 . If $m_i|M_i$ and $\gcd(d, M_i/m_id) = 1$ for i = 1, 2, where $d = \gcd(M_1/m_1, M_2/m_2) \geq 2$, then there exists a cyclic $(m_1 + m_2)$ -distinguishable sequence with $k_1 + k_2$ colors of length $\frac{M_1M_2}{d}(\frac{1}{m_1} + \frac{1}{m_2})$.

Theorem (-, 2025+)

For any m and k, by viewing $M_m^c(k)$ and $M_m(k)$ as functions of k, one has

$$M_m^c(k) = \theta(k^m)$$
 and $M_m(k) = \theta(k^m)$.

2D Multiset Combinatorial Gray Codes

- 2D color mapping $\Phi : \mathbb{Z}_M \times \mathbb{Z}_N \to [k]$
- coding window size: $m \times n$
- For $(x_0, y_0) \in \mathbb{Z}_M \times \mathbb{Z}_N$, define a multiset

$$S_{m,n}(x_0, y_0) := \{ \Phi(x_0 + i, y_0 + j) : 0 \le i < m, 0 \le j < n \}.$$

Definition

The color mapping Φ is called

- (m,n)-distinguishable if the multisets $S_{m,n}(x_0,y_0)$ are all distinct for $0 \le x_0 < M m$ and $0 \le y_0 < N n$
- cyclic (m, n)-distinguishable if the multisets $S_{m,n}(x_0, y_0)$ are all distinct for $(x_0, y_0) \in \mathbb{Z}_M \times \mathbb{Z}_N$.

Objective: given M, N, m, n, minimize $k \leftarrow K_{M,N}(m, n)$ or $K_{M,N}^{c}(m, n)$

2025 TMS Annual Meeting

2D Multiset Combinatorial Gray Codes

- 2D color mapping $\Phi: \mathbb{Z}_M \times \mathbb{Z}_N \to [k]$
- coding window size: $m \times n$
- For $(x_0, y_0) \in \mathbb{Z}_M \times \mathbb{Z}_N$, define a multiset

$$S_{m,n}(x_0, y_0) := \{ \Phi(x_0 + i, y_0 + j) : 0 \le i < m, 0 \le j < n \}.$$

Definition

The color mapping Φ is called

- (m,n)-distinguishable if the multisets $S_{m,n}(x_0,y_0)$ are all distinct for $0 \le x_0 < M m$ and $0 \le y_0 < N n$
- cyclic (m, n)-distinguishable if the multisets $S_{m,n}(x_0, y_0)$ are all distinct for $(x_0, y_0) \in \mathbb{Z}_M \times \mathbb{Z}_N$.

Objective: given M, N, m, n, minimize $k \leftarrow K_{M,N}(m,n)$ or $K_{M,N}^{c}(m,n)$

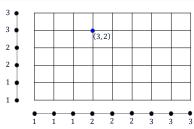
2025 TMS Annual Meeting

Product Code

- $S = s_0 s_1 \cdots s_{M-1}$ in which $s_i \in [k]$
- $T = t_0 t_1 \cdots t_{N-1}$ in which $t_i \in [h]$
- Define $\Phi(x, y) = (s_x, t_y), \forall (x, y) \in \mathbb{Z}_M \times \mathbb{Z}_N$.

Proposition

- The color mapping Φ is (cyclic) (m, n)-distinguishable if S is (cyclic) m-distinguishable and T is (cyclic) n-distinguishable.
- $K_{M,N}(m,n) \leq K_M(m) \cdot K_N(n)$ and $K_{M,N}^c(m,n) \leq K_M^c(m) \cdot K_N^c(n)$



Main Result III: color-coding gain

The number of bits to represent an ID:

- in "straightforward protocol", it is $\log_2 MN$
- in "multiset combinatorial Gray coding protocol", it is $\log_2 K_{M,N}(m,n)$

Define the color-coding gain as

$$\mathcal{R}_{M,N}(m,n) := \lim_{M,N\to\infty} \frac{\log_2 K_{M,N}(m,n)}{\log_2 MN}.$$

Theorem (-, 2025+)

It holds that

$$\frac{1}{mn} \le \mathcal{R}_{M,N}(m,n) \le \frac{\log_2 k + \log_2 h}{m \log_2 k + n \log_2 h}.$$

where $k = K_M(m)$ and $h = K_N(n)$. In particular, when m = n, one has

$$\frac{1}{m^2} \le \mathcal{R}_{M,N}(m,m) \le \frac{1}{m}.$$

Main Result III: color-coding gain

The number of bits to represent an ID:

- in "straightforward protocol", it is $\log_2 MN$
- in "multiset combinatorial Gray coding protocol", it is $\log_2 K_{M,N}(m,n)$

Define the color-coding gain as

$$\mathcal{R}_{M,N}(m,n) := \lim_{M,N\to\infty} \frac{\log_2 K_{M,N}(m,n)}{\log_2 MN}.$$

Theorem (-, 2025+)

It holds that

$$\frac{1}{mn} \leq \mathcal{R}_{M,N}(m,n) \leq \frac{\log_2 k + \log_2 h}{m \log_2 k + n \log_2 h},$$

where $k = K_M(m)$ and $h = K_N(n)$. In particular, when m = n, one has

$$\frac{1}{m^2} \le \mathcal{R}_{M,N}(m,m) \le \frac{1}{m}.$$

Main Result III: color-coding gain

Let
$$k = K_M(m)$$
 and $h = K_N(n)$. Then,

$$\frac{1}{mn} \leq \mathcal{R}_{M,N}(m,n) \leq \frac{\log_2 k + \log_2 h}{m \log_2 k + n \log_2 h}.$$

Proof.

- - ► Apply Stirling's approximation formula.
- Product Code: $K_{M,N}(m,n) \leq K_M(m) \cdot K_N(n)$
 - $\qquad \qquad \frac{\log_2 K_{M,N}(m,n)}{\log_2 MN} \leq \frac{\log_2 K_M(m) + \log_2 K_N(n)}{\log_2 M + \log_2 N}$
 - $M_m(k) = \theta(k^m) \Rightarrow M \approx k^m$ and $N \approx h^n$

Concluding Remarks

Remark 1: Universal Cycles

Definition (Universal cycles, Ucycles)

An (m, k)-Ucycle is a cyclic m-distinguishable sequence S on [k] in which

- there is no repeated elements in any $S_t(m)$, and
- **②** every *m*-subset of [k] appears exactly once as $S_t(m)$ for some t.

Some facts:

- A (k, m)-Ucycle is of length $\binom{k}{m}$.
- A (k, m)-Ucycle exists, then $m \mid {k-1 \choose m-1}$

Conjecture

For every $m \in \mathbb{N}$, there exists $n_o \in \mathbb{N}$ such that for all $k \ge n_o$, there exists an (m,k)-Ucycle whenever m divides $\binom{k-1}{m-1}$.

F. Chung, P. Diaconis, and R. Graham, "Universal cycles for combinatorial structures," Discrete Math., vol. 110, pp. 43–59, 1992.

Remark 1: Universal Cycles

Theorem (Glock–Joos–Kühn–Osthus, 2020)

For every $m \in \mathbb{N}$, there exists $n_0 \in \mathbb{N}$ such that for all $k > n_0$, there exists an (m,k)-Ucycle whenever m divides $\binom{k-1}{m-1}$.

- This theorem is proved by a probabilistic method.
- Some constructive results can be found in:
 - ► Chung–Diaconis–Graham (1992): m = 2
 - ▶ Jackson (1993): m = 3, partial m = 4, 5
 - ► Hurlbert (1994): m = 3, 4, 6 when gcd(m, k) = 1.

S. Glock, F. Joos, D. Kühn, and D. Osthus, "Euler tours in hypergraphs," Combinatorica, vol. 40, pp. 679-690, 2020.

F. Chung, P. Diaconis, and R. Graham, "Universal cycles for combinatorial structures," Discrete Math., vol. 110, pp. 43-59, 1992.

B. W. Jackson, "Universal cycles of k-subsets and k-permutations," Discrete Math., vol. 117, pp. 141–150, 1993.

G. Hurlbert, "On universal cycles for k-subsets of an n-set," SIAM J. Discrete Math., vol. 7, 598-604, 1994.

Remark 2: Higher Dimensional Extension

This concept was extended to *d*-dimension for any $d \ge 2$:

- $\Phi: \mathbb{Z}_M^d \to [k]$
- the window size: m^d

Theorem (Chen-Keevash-Kennedy-de Panafieu-Vetta (2024))

Fix a dimension $d \geq 2$ and the number of colors k of the form bd + 1 for some $b \geq 1$. For any window size m multiple of 2(k-1), there exists a cyclic $(m)^d$ -distinguishable integer lattice \mathbb{Z}_M^d with

$$M \sim C_k^{1/d} \cdot m^{k-1}$$
 where $C_k = \left(\frac{2}{k-1}\right)^{k-1}$.

- When $d = 2 \Rightarrow M \sim \left(\sqrt{\frac{2}{k-1}}m\right)^{k-1}$
- Product Code: $M \sim (\sqrt{k})^m > \left(\frac{1}{2q} \cdot m\right)^{(k-1)q}$, when set m = 2(k-1)q

C. S. Chen, P. Keevash, S. Kennedy, É. de Panafieu, and A. Vetta, "Robot positioning using torus packing for multisets," 51st International Colloquium on Automata, Languages, and Programming (ICALP), 2024.

Conclusion

- Formulate the problem of 1D and 2D multiset combinatorial Gray codes
- General upper bounds on the grid size
- For 1D multiset combinatorial Gray codes
 - ► $M_p^c(k) = {k+p-1 \choose p} \frac{k}{p}$ for any prime p and integer k with p|k
 - Exact values of $M_2^c(k)$ and $M_3^c(k)$
 - $M_m^c(k) = \theta(k^m)$
- For 2D multiset combinatorial Gray codes
 - Product Code
 - ► The color-coding gain has $\frac{1}{m^2} \le \mathcal{R}_{M,N}(m,m) \le \frac{1}{m}$

Future and Ongoing Works

- For 1D case
 - ▶ Optimal constructions for (cyclic) *m*-distinguishable sequences, for *m* > 4.
 - For any any prime p and integer k with p|k, is $M_p^c(k) = {k+p-1 \choose p} \frac{k}{p}$?
 - ► Any other constructive methods for universal cycles?
 - ► The sufficient condition of the existence of an Mcycle is necessary?
- For 2D case
 - Find a multiset combinatorial Gray code such that $\mathcal{R}_{M,N}(m,m) = \frac{1}{m^2}$
 - ► Any optimal construction?
- Extend our results on 1D and 2D grids to higher dimensional cases.

Thank you for your listening