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Introduction

Joint Communication and Sensing (JCAS)

Definition : networks combining communication functions
with sensing services, like user localization or environmental
sensing

Examples : enable precision navigation in urban environment,
monitor activity in a given coverage area, provide collision
avoidance services to autonomous vehicles, facilitate AR/VR
applications...

Challenge : Dealing with the intercell interference with
tractable models that can be simulated numerically
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Introduction

Contributions and objectives

In constructing a modeling framework for JCAS network, here are
two fundamental questions:

1 What is an appropriate conceptual framework for JCAS
networks?

2 How can the performance of communication and sensing be
characterized within this conceptual framework?

Until there, Stochastic Geometry has proven to be very powerful
for SINR analysis in wireless communications. The main
contribution of this article consists in extending that to radar
tracking in JCAS networks.
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Introduction

Outline of the article

1 Model of JCAS network and assumptions on it

2 An information theoretic approach for performance metrics

3 Models and assumptions for commmunication and sensing

4 Analytical expressions and approximations

5 Numerical results
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Model of JCAS network and assumptions on it

Figure: Basic scenario illustration1 for JCAS in cellular systems

1
Illustration from Joint Design of Communication and Sensing for Beyond 5G and 6G Systems, H. Wild, V.

Braun, H. Viswanathan, IEEE
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Model of JCAS network and assumptions on it

JCAS network representation

In general, the spatial components of a JCAS network may be
represented by the tuple :

tΦB ,ΦU ,ΦS ,Θblocku

Where ΦB is a PP on R2 modeling the locations of BSs, ΦU is a
PP on R2 modeling the locations of UEs, and ΦS is a PP on R2

modeling the locations of SOs.
Θblock is a set process on R2 representing the locations and shapes
of blockages in the network.
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Model of JCAS network and assumptions on it

Assumptions on spatial attributes

ΦB ,ΦU ,ΦS are stationary, mutually independent PPPs with
λU " λB and λS " λB .

Θblock is a Boolean line process whose induced LoS regions are
approximated by the independent exponential blockage model.

Communication may occur over either LoS and NLoS links,
but sensing is LoS only.
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An information theoretic approach for performance metrics

Communication capacity

For a link with SINRcom, the capacity over an AWGN1 channel
with interference treated as noise is given by the Shannon Formula.
If one assumes that sinc-like pulses are employed, letting TS

denote the symbol rate of the system, we have:

Ccom “
1

TS
log2p1 ` SINRcomq

1Additive (added to any noise that might be intrinsic to the information
system) White (uniform power spectral density across the frequency band)
Gaussian (normal distribution in the time domain) Noise
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An information theoretic approach for performance metrics

Sensing capacity

For the radar, the expression of the capacity is more difficult to
characterize, and then it is approximated1 by the following lower
bound:

Crad «
I pθ ` Nest ;θq

TCPI
«

1

2TCPI
log2p|I ` Q1{2R´1Q1{2|q

Where θ is the vector of unknown target parameters (range and
velocity), I p.; .q denotes mutual information and TCPI is the
processing interval. Here we assumed that the prior P “ N pθ̄,Qq

is Gaussian and Nest „ N p0,Rq (vector of estimation noise).

1This estimation is inspired from Extending Joint Radar-Communications
Bounds for FMCW Radar with Doppler Estimation, B. Paul, D. W. Bliss
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An information theoretic approach for performance metrics
A note on mutual information

Let pX ,Y q be a pair of jointly continuous random variables with values over the
space X ˆ Y. If their joint probability density function is PpX ,Y q and the
marginal probability density functions are PX and PY , the mutual information is
defined as:

I pX ,Y q “

ż

Y

ż

X
PpX ,Y qpx , yqlog

ˆ

PpX ,Y qpx , yq

PX pxqPY pyq

˙

dxdy

Mutual information measures the information that X and Y share : it measures
how much knowing one of these variables reduces uncertainty about the other.
For example, if X and Y are independent, then knowing X does not give any
information about Y and vice versa, so their mutual information is zero.
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An information theoretic approach for performance metrics
A note on mutual information

Let’s see some interpretation for the mutual information I in our case:

I pθ ` Nest ;θq

The idea is to consider the entropy of the random parameter being
estimated and the entropy of the estimation uncertainty of this parameter.
The target, in the form of entropy (uncertainty) with respect to the radar
tracker, is seen as an uncooperative communicator. In this sense, we can
view the desired information to be communicated as the target source
entropy and the undesired entropy as the total channel noise (receiver and
estimation noise).
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An information theoretic approach for performance metrics

Setting used

To characterize the estimation rate, we consider that the setting is
a multicarrier waveform used to sense a single target in the
presence of interference from the JCAS network. Here are some
notations:

The waveform consists of Nc subcarriers, and the maximum
burst duration of the radar excitation signal is Ns multicarrier
symbols.

A subset Srad P t0, 1uNsˆNc of these resource elements are
used for sensing, and we note SINRm,n the corresponding
SINR on a resource element.
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An information theoretic approach for performance metrics

Theorem : Sensing Capacity Bounds

1 Let J denote the Fisher Information of the estimation problem
related to sensing. Then the sensing capacity is upper bounded as:

Crad ď CUB
rad “

1

2TCPI
log2p|I ` Q1{2JQ1{2

|q

2 We can give upper and lower bounds for CUB
rad as follows:

1

2
log2p1 ` G ¨ SINRradq ď TCPIC

UB
rad ď log2

ˆ

1 `
1

2
G ¨ SINRrad

˙

where
SINRrad “

ÿ

pm,nqPSrad

ηm,nSINRm,n

and tηm,nu,G are constants depending on waveform parameters and
prior covariance for θ.
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An information theoretic approach for performance metrics
A note on Fisher Information

Let f pX ; θq be the density function of X conditioned on the value of θ.
We define the score as the θ-derivative of the log of the likelihood function:

spθq :“
BlogLpθq

Bθ
“

Blogf pX ; θq

Bθ

It can be shown that E rspθq|θs “ 0.
We then define the Fisher Information as the variance of the score:

J pθq “ E

«

ˆ

Blogf pX ; θq

Bθ

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

θ

ff

“

ż

R

ˆ

Blogf px ; θq

Bθ

˙2

f px , θqdx

Informally, the Fisher information is a way of measuring the amount of
information that an observable random variable X carries about an unknown
parameter θ upon which the probability of X depends.
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An information theoretic approach for performance metrics
Ideas of proof for the theorem

1 From the Cramér-Rao bound, we have:

CovpNestq “ R ě J´1

where the inequality A ě B means that A ´ B is semi-definite positive.
Noticing that all the matrices are semi-definite positive, the result is then
immediate.

2 We first compute the Fisher Information Matrix, which is a 2 ˆ 2 matrix.
Then, we deduce the following inequalities:

1 ` TrpQ1{2JQ1{2
q ď |I ` Q1{2JQ1{2

| ď
1

4
Tr

´

I ` Q1{2JQ1{2
¯2

.

The lower bound comes from the positive semi-definiteness of Q1{2JQ1{2,
and the upper bound can be deduced from the AM-GM inequality.
We conclude the proof noting that G ¨ SINRrad “ TrpQ1{2JQ1{2

q.
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An information theoretic approach for performance metrics

Performance metrics

From the previous slides, we see that SINRcom and SINRrad can be
used to characterize (or bound) the communication and sensing
capacities. This leads us to define the following quantities:

For coverage:

P0
ΦU

pSINRcom ě τq and P0
ΦS

pSINRrad ě τq

For capacity:

E0
ΦU

rlog2p1 ` SINRcomqs and E0
ΦS

rlog2p1 ` G ¨ SINRradqs
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Models and assumptions for commmunication and sensing

Path loss functions

For communication, the LoS and NLoS path loss functions are
respectively:

gLprq “ KLr
´αLe´γLr and gNprq “ KN r

´αN e´γN r

This gives the following path loss to the origin:

Lp||Xk ||2q “ gLp||Xk ||2qMk ` gNp||Xk ||2qp1 ´ Mkq

For sensing, the two way path loss is:

gL,retprq “
KL

4π
r´αLe´2γLr
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Models and assumptions for commmunication and sensing

Fading and cross section

The typical UE faces Rayleigh fading on the desired signal :

|H0|2 „ Expp1q

The radar cross section of the typical SO is constant and assumed
exponentially distributed :

κCS „ Expp1q

For interfering links, the fading terms are assumed IID and
distributed as follows:

|Hk
n |2 „ ΓpNL,NLq when Xk is LoS to the receiver,

|Hk
n |2 „ ΓpNN ,NNq when Xk is NLoS to the receiver,

where NL,NN ě 1 denote the order of the fading model.
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Models and assumptions for commmunication and sensing

Beamforming and antennas

The BSs and UEs perform directional beamforming for both
communication and sensing.

For a communication link, the BS and UE select the beam
directions which maximize the received power.

Directionnal antennas are used for transmission and reception.
Their antenna patterns both follow the sectored model:

G pθq “

#

Gmax when θ P rθ0 ˘ 3dBs

ξ ¨ Gmax otherwise.
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Models and assumptions for commmunication and sensing

UE and SO Association Policies

The typical UE is associated with the BS that has optimal
path loss. Denoting this BS by X0, we have:

X0 “ arg suptLp||Xk ||2q : Xk P Φ̃Bu

The typical SO is associated with the nearest LoS BS.
Denoting this BS by X0, we have:

X0 “ arg inft||Xk ||2 : Xk P Φ̃Lu
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Models and assumptions for commmunication and sensing

SINR Models

Letting νcom denote the normalized noise power at the typical UE,
we can express SINRcom as:

SINRcom “
|H0|2Lp||X0||2q

ř

XkPΦ̄BztX0u |Hk |2BkZ k
ULp||Xk ||q ` νcom

Similarly, we can define an SINR for the sensing case:

SINRrad “ 1tΦLpR2q ą 0u
ÿ

pt,nqPS̃rad

θt,n ˆ
κCSgL,retp||X0||q

ř

XkPΦ̄B ztX0u F
k
t,nZ

k
BLp||Xk ´ X0||q ` νrad

where S̃rad and tθt,nu are the reduction of Srad and tηm,nu over
time slots and subcarriers.
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Analytical expressions and approximations

Step 1 : From distribution to Laplace Transform

For both SINR models, the fading term is exponentially
distributed, meaning that their distribution can be characterized by
the Laplace transform of the interference process:

I “
ÿ

RkPΦ

FkgpRkq

Where Φ is an arbitrary PPP with intensity measure Λ, tFku are
arbitrary fading terms and g is an arbitrary path loss function.

With the use of formula for the Laplace Transform of a PPP, this
gives the following expression of the Laplace transform:

LI psq “ exp

ˆ

´

ż

R`

p1 ´ LF ps ¨ gprqqqΛpdrq

˙
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Analytical expressions and approximations

Step 2 : From Laplace Transform to finite bounds

We define the Mellin Transform of the path loss with respect to Λ
and restricted to a set A of R` as:

MpΛ˝g´1qpp;Aq “

ż

A
gprqp´1Λpdrq

Using these Mellin Transforms, we can then define two functions
HLB and HUB which are finite support approximations of Λ. The
Laplace transform can then be upper and lower bounded by some
exponential of finite sums of these terms.
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Analytical expressions and approximations

From finite bounds to tractable bounds

For the intensity functions at stake, the associated path loss
Mellin Transforms are not tractable. We then gives some
bounds to them, which are expressed in terms of piecewise
poly-exponential functions, allowing us to find closed forms for
the Mellin Transforms.

Those path loss Mellin Transforms can be expressed in closed
forms using the generalized incomplete gamma function :

Γpp, z1, z2q “

ż z2

z1

xp´1e´xdx

Thanks to that, we can give some computable bounds of the
sensing coverage probability and communication coverage
probability.
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Numerical results
Coverage Probability

(a) Sensing (b) Communication

Figure: Comparison of Coverage Probability for Sensing and Communication
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Numerical results
Ergodic Efficiency

(a) Sensing (b) Communication

Figure: Estimation of the Ergodic Efficiency according to the Base
Station Density in the low blockage regime
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Numerical results
Ergodic Efficiency

(a) Sensing (b) Communication

Figure: Estimation of the Ergodic Efficiency according to the Base
Station Density in the high blockage regime
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Conclusion

Conclusion

Using an information theoretic framework, we have extended the
notion of coverage probability to the radar setting, defining it as the
probability that the rate of information associated with a typical
sensing target exceeds some threshold.

Focusing on the multicarrier setting, we established upper and lower
bounds on the estimation rate in terms of SINR.

We then used a stochastic geometry framework and some
approximations on the model to obtain tractable bounds for the
coverage probabilities and ergodic capacities.

This leads us to notice for example that densification of the network
improves sensing performance, in contrast to the communication
function.
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Conclusion

Future work

Use of different network sensing approaches or different
parameters of interest

Impact of imperfect SO association with the serving BS
(detection uncertainty, heterogeneity in BS capability)

Other forms of BS cooperation or sensing policies among BSs,
perhaps accounting for more structured deployments using
non-Poisson spatial models.
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