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Introduction

- Medium Access Control (MAC) algorithms used to control access in wireless
networks

- MAC protocol preventing neighbors from transmitting simultaneously
(collision and loss of packets impossible)

- Maximal stability: all nodes in the network can transmit all arriving packets
for all arriving processes

- Centralized algorithms : MaxWeight/a-fair algorithms are known to be
maximally stable
- Need a centralized controller to make decisions

- Decentralized algorithms : Carrier Sense Multiple Access (CSMA, used in
IEEE 802.11)

- Nodes have a random back-off time and transmit if they don’t sense
another transmission
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Introduction

- Most results are known for saturated networks and cannot be reduced to
unsaturated networks

- In practice, the processes are not monotonous

- Development of queue-based algorithms which provide maximal stability, but
are very difficult to implement and lead to high delays

- Assume Standard CSMA:

(a) Each node does not know its neighbors
(b) Access procedure is the same for all nodes
(c) The node does not access the network if its queue length is empty
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Outline

@ Model and Notations
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Line and Circle Topologies

- N transmitter nodes in a circle or a line
- A;(N) is the neighborhood of node N:

Circle topology Line topology
{N,2} fori=1 2 fori=1
N (i) = (N-1,1}fori=N M()= {(N-1}fori=N
{i—1,i+1} else {i—1,i+1} else
Circle topology Line topology
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Queuing Model

All nodes have infinite buffer space. Time is slotted. Transmission time is
equal to 1

Q;(n): queue size at node i at time n

&;(n): number of arrivals at node i at time n. (&;(n) are i.i.d. with
E¢;(m]=A

- Transmission priorities: neighbors cannot all transmit during the same time
slot (Medium Access).

- At each time slot, priorities {U;(n),...,Un(n)} are allocated

The node with priority 1 will transmit if its queue length is not zero
Proceed by induction: the next-highest priority node transmits if no
node in its neighborhood is transmitting

The procedure is repeated until no node can transmit
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Queuing Model

Priorities: {2,1,4,5,8,3,6,4}
Transmitting nodes: 2,4, 6,8
Standby nodes: 1, 3,5,7

- D;(n): number of packet transmissions at queue i in time slot n

- Evolution of queue i length:

Qi+1(n+1)=Q;(n)—D;(n) +<;(n)
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© Parking constants
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Parking constant on a line

- Transmission initiation process similar to the discrete-time parking problem

5% Ge el

- Ly: expected number of departures in a line ok k non-empty nodes ->
expected number of cars parked in a parking lot of k slots.

L—k": parking constant (or jamming density)

Known results: (ﬁ) is a non-increasing sequence and (see [?]):
" Jn=3

n k 12](?*1
L”:k;(_l) + T(n—k+1)
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Li.m expected number of departures from the k first nodes in a network of m
non-empty nodes. Then for all k<=m :

Lim = Li

O O
Proof by induction. Write:

1 k-1 M

Lem=—|> 1 +Lio+Li—j1m—i-1 |+ Likcn + ), Li.i—2
M\l o ~—  iZki2 S~
First node First k—1 nodes Node k-1 Subsequent nodes
And:
Lk=1\—/f Z(1+Lz 2+ Lg—i-1) + Z L
i=k+1

Consequence:

Lism=Li+Lm
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System with reshuffling

- Cy: expected number of departures in a system of k non-empty nodes in a
circle

- Introduce reshuffling (3 versions)

- Version 1: All queues are reshuffled uniformly at random

- Version 2: All empty queues stay where they are, all non-empty queues
are reshuffled

- Version 3: All non-empty queues are reshuffled within each non-empty
segment

For the line topology, the system with reshuffling is stable if A <min{Ly/N,1/2}.
For the circle topology, the system is stable if A < Cn/N.

- Proof: if A <min{Ly/N,1/2} for the line topology, or if A <Cx/N for the
circle topology, the average number of arrivals in any non-empty segment is
lower than the number of departures
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© A Loose Stability Condition
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Foster-Lyapunov Theorem

Theorem (Foster, 1953)

Let X be a ¢p-irreducible discrete-time Markov chain. X is positive recurrent if and
only if there exists a finite set C, a Lyapunov function L and constants a,8>0
such that:

AV(Q) =E[L(X1) - L(X0)|Xo =] = pL{C e C} - al{l ¢ C}

- If the state space is RY, it is enough to prove that there exists K >0 and
€ >0 such that:
AV({) < -¢
whenever |{| > K

- ldea: find a suitable function L for the queuing network and deduce a
condition on A for the system to be stable
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A Loose Stability Condition

Let ¢ be such that &;(n) ~ cf If A <3/8 and E[é?] < oo, the system is stable for
both topologies

- For the circle topology. Take:
N
Lx) =Y (xi + xi1)?
i=1
- Let Q(0) = (Q1(0),...,Qn(0)) be an initial condition
N

ALQ) =) E[(Qi+Qjs1+&i+ &1 —Di— Di1)? = (Q; + Qi+1)2]

i=1

N N
<Y (B[ +Ei41)%]) +E[(Di + Dix)?]) +2 Y (Qi + Qi+1) @A — EID; + Dy11)

iz i=1

—
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A Loose Stability Condition

- Note that:
N
Y (B[ +&i+1)?) +E[(Di + Dis1)?]) <2 E[E5]+2NA* +4N
i=1 i
- Bound the second term:
N N
Y (Qi+Qis)@A—E[D; + Dis1]) = ), Qi(4A —E[D;_1] - 2E[D;] —E[D;11]])
i=1 i=1

- Make a case study:
- Qi-1=Qi41=0: E[D;—1]1+2E[D;] +E[D;11]1=2
- Qi-1=1and Qj41 =0: E[D;_1]+2E[D;] +E[Dj.1] = 1 +E[D;] = 3/2
- Qi-1=Qix1 =1
E[D;i-1+2E[D;] +E[Dj+1] = (E[D;-1 +E[D;]) + (E[D;] + E[D;+1])
>3/4+3/4=3/2
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A Loose Stability Condition

- We combine the estimates:

N
> Qi
i=1

i=

ALQ) = Y E[E3]+2NA* + 4N +2(41 - 3/2)
i

N

-
<o

N
<C+(B1-3)) Q;
i=1

- We have AL(Q) < —¢ if ¥¥ | Q; = K with:

K= C+e
T 3-81

3
and A< -
8
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A Loose Stability Condition

- For the line topology, we use:

. N-1
L=} (i +xi41)?

i=1
- We bound the drift:
. N-1
ALQ) = Z Q;(4A —E[D;_1] - 2E[D;] —E[D;4+111)

i=2

+Q1(2A-E[D1] -E[D2]) + Qn(2A~E[Dn-1] —E[Dn])

—_— ~ ~ ”

=21 =—1

- Using the same arguments, the system is stable if 1 < %
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A Loose Stability Condition

- Probability of transmission of the node 2/ N —1 in the line:
- N=4: 3/8
- N=5:11/30

- We can prove that:

nlim P[Transmission of node 2] =1 - e~ ! = 0.3679
—00

- Very well know results in Markov jump processes: the system is stable if A <v

Is the condition A < % tight ?
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© Towards a better stability condition
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Fluid limits

- Introduced by Rybko and Stolyar in [?]. Idea: study the average over large
jumps in the state space

- Sequence of processes Q' (-) such that |Q"(0)| = r is fixed.
- Goal: study the behavior of

1
q(6) = Jim ZE[IQ"(rol] (1)

Theorem (Dai, 1995, [?])

If the fluid limit model for a fixed queuing discipline is stable, i.e. there exists

T >0 such that q(T) =0, then the Markov chain X describing the dynamics of the
network is positive Harris recurrent.

- Remark: the reciprocal is not true, fluid systems can be unstable and the
underlying Markov chain, stable
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Fluid limits

Change the representation of the queueing network:
- Ql.r(t) = Qi’([tJ) is the queue length at node i
- F[(8) = X1<n=1y) §i(n) is the total number of arrivals at node i up to
time ¢t
- H] (1) is the total numbers of departures from node i up to time ¢

Queue size at node i at time t:

QI(N=Q[ O +F (-H(1)

s: occupancy state at node i at time t, u: ranking realization (assignation of
priorities)

- d=¢(s,u): transmission realization.

Define ® ={(s,u)} and ¥ = {(s, u, d)}

Probability distribution on © : Py(u,d) = % 1{d = ¢(s, u)}

- Gg(t) =Y 1<i<s) 1{(s, u,d) € B}: number of time slots during which event
B e ¥ happened
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Fluid Scaled Process

Definition

A fluid limit is a collection of deterministic functions y = [(q;, fi, hi)1<i<N, (8B)Bew]
such that there exists a subsequence r; such that:

u.o.c.

n

(IQ’"(t),—Fr"(t), H’"(t)) ,(in;"(t))
r 1<isN \I'n Be¥

- Temporal evolution of the fluid-scaled system:
Gi(0) = qi(0) + fi () = hi (1) = q; (0) + At — §ia,=1y (1)

- Define a probability measure on ¥:

JT(B)_i (n
(W)=, 88
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Friends And Foes

- Nodes that are mutual friends have a higher probability of transmission,
nodes that are mutual foes have a lower probability of transmission

- Edge nodes have a higher probability of transmission
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Stability Condition on a Circle

Goal: find € >0 such that, for any regular point ¢ such that Zﬁl qi(t)>0:

gi(t) < -¢

M=

~
Il
—

If for all i >0, g;(t)>0:

c
G0 =A-m(ldi=1)=A~—2

(Cn/n) is a non-increasing sequence for even values of n, and non-decreasing
for odd values of n

For even values n=4, C,/n=lim,_. C,/n=1/2(1-e"2) >2/5 and for odd
values n>=5, C,/n>Cs/5=2/5
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Stability Condition on a Circle

If there is at least one i such that §;(¥)=0

Reduce the analysis to positive groups of size I: groups of nodes such that
Gi+1>--- Gr+1 such that Gg(f) = Grr1+1(1) =0 and Gg;(2) > 0.

(H<—-€el)<0

4

We prove that for any positive group of size [, 25:1 E];C+

- Make a case study depending on the size of I:
- If1=1, we get q;chl(t) <A+1/2+A/4
- If1=2, we get G, (D) + @G, ,(0) <51/2-1
- The same goes for [ =3
- If 1 =4, the worst occupancy state occurs in a segment of length 7 where
the middle node transmits, with probability is 179/420 > 2/5

- We thus have:
A<2/5 = The system is stable
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Stability Condition on a Circle

- Remind that Cy =1+ Ly_3, and thus, Ly/N >2/5
- If for all i, g; (1) > 0:

N
Y G =NA-Ly
i=1

Which is negative if 1< %

Else: case study as before

- We have to take into account border nodes

- The same result holds:

A<2/5 = The system is stable
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Conclusion

For the circle topology:
- If A>Cn/N >2/5, the system is always instable

- For N=5, Cy/N =2/5 and the bound is tight, and
limpy—oo Cn/N =1/2(1 — e72) = 0.4323

- Stability if A < Cy/N is still an open question

For the line topology:
- Some nodes receive a throughput less than 2/5

- Not an intuitive result: need to look at the overall topology and not only
node throughput
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