Takeaways of building a
research-oriented system

Collection of little things learned the hard way



Context

= Hi, I'm aresearch engineer | (now in a PhD)
O I'm buidling a system to discover the topology of Internet (not published yet)
~ Modern

~ Scalable

+ Fault-tolerent



System design and building



Research ... About design

Proof of Concept definition
Constraints extraction
High-level design
Technologies selection

Test cases



Research ... About design

Controller

Database
(clickhouse)

Logstash | Elasticsearch

HTTPs

v

K8S API

REST
API
Database
(clickhouse)
A

HTTPS
Message Broker Object Storage
Loki «—L (Redis) (MinlO)
> Grafana
Prometheus
‘ HTTPS
RESP
HTTPS

m“



When technologies influence design

Docker / Docker Compose
Take you away from monolithic designs
Allow you to incorporate open-source third-parties instead of homecook bricks

Make you think about flows and security



© How the user will interact with your system / program ¢

© Command-line ¢ (Typer, Click)
© Web framework ¢ (FastAPI, Connexion) ¢
© Website ¢



v Quick CPU / Mem / Disk

CPU Busy

Sys Load (5m avg)

Worker Logs

N
I
ML CRRY TSI TROE P IEA

2200 23:00 00:00 01:00 02 00 03:00 04:00 05 00 06 00

Agents Logs

Sys Load (15m avg) 2 RAM Used > SWAP Used o Root FS Used




Security

Reverse proxy is useful (TLS termination, certificate management, ...)

Let’s encrypt
Of course, no plain-text password in database! (e.g., Bcrypi)

APIs Authenftication : BasicAuth, JWT. (/I\ Timing attacks, DDOS, ... )



(Python) code within a system



Good practices

Even when working alone, think about your collegues (or you of the future)

Python packaging and dependency management (poeftry, pipenv)
Lint the code (flake8, pylint)

Format automatically (black)

Test | The sooner the better (pytest)

Security (Bandit)

Documentation



Tests

Slower, more
expensive

Pyramid of tests : guide = law
Test what it makes sense T

Don't chase a fest coverage

Faster,
cheaper




Documentation at multiple levels

Code Comments (but wisely)

Tests are a form of documentation

Custom library documentation (ReadTheDoc)
APl documentation (Swagger) for technical users

Classical end-user high-level documentation (website ¢)



Version control

Github private repository are free
Track features and issues (Github issues/project, Trello)
Use of git tfags and sementic versionning

Branching model



Cl/CD

Cl: Verification / Testing at commit and pull requests

CD: Automatic Docker image push

Different envionments : Dev/Test/Prod

More advanced use cases : Blue/Green, Canary

Often used: Github Actions, Gitlab CI/CD, TravisClI, Jenkins



Fault-tolerence

O Python package: Tenacity (https://qithub.com/jd/tenacity)

© Every interface with other components are in the same library


https://github.com/jd/tenacity

Code use-case in depth : Async

Begin to be wildly used in Python ecosytem
Very convenient for scalability of distributed systems

Fully infegrated in FastAPI, Typer, ...



Questions ?



