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Object of interest= evolution in time of a system of interacting
particles.

Particles= very wide meaning (neurons, queues, players,...)
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Microscopic approach

Describing the behavior of the system through a system of SDEs

Example

Let N > 1. We consider the stochastic processes X4N on R for
1 < k < N, verifying the SDEs

tq N )
Xk’N(t):Xk’N(O)—I—wk(t)—i-/O NZb(X"’N(s),XJ’N(s))ds (1)

where w

k

are independent BM, and b is a globally Lipschitz function.
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Example

Let N > 1. We consider the stochastic processes X*:N on R for
1 < k < N, verifying the SDEs

t 4 N
X"”V(t):X"’N(O)—i—wk(t)—i-/0 %;b(Xk’N(s),Xj’N(s))ds

where wk

are independent BM, and b is a globally Lipschitz function.

A few remarks

@ Without the noise, just a set of ordinary ODEs.

@ We have existence and trajectorial uniqueness of the solutions
(stochastic Cauchy-Lipschitz theorem).

@ Good modelization, but hard to compute.
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Macroscopic approach

Describing the behavior of a simplified version of the initial system
through a system of SDEs that are no longer interlocked and that
describe the statistical distribution of the particles.

Example

We consider the stochastic processes Yk onRforl < k<N,
verifying the SDEs

ko ok ok ‘ _ks k =
X“(£) = X*(0) + (t)+AAb(X(),y)us(dy)d, )

where w* are independent BM, b globally Lipschitz function and pX
. —k
is the law of X" (s).
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@ Infinite number of particles— > statistical approach (sometimes
called thermodynamic limit)

@ Heuristic: equation (2) is intuitively what we believe the limit of
(1) verifies when N goes to infinity (law of large numbers)

@ We obtain nonlinear SDEs, but they don't depend on each other
anymore— > asymptotic independence

o Information lost compared to the initial model (correlations
between particles for example, or finite size effects).
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Putting the " mean-field” in " mean-field theory”

Note that we can rewrite (1) in terms of its empirical mean measure:

Xk’N(t):Xk’N(O)—i—wk(t)—|—/Ot/Rb(Xk*N(s),z)esN(dz)ds, (3)

N

where for all r > 0, e N 5X, N.

v
Remarks

@ We are interested in the convergence in law of this empirical
measure when N goes to infinity. If it converges, there is
asymptotic independence and this is called propagation of chaos.

@ We have exchangeability, that is, invariance by permutation of
the law of (XBN ..., XNV,




The results

@ Well-posedness of the SDEs (2).

@ Convergence in probability of the empirical mean measure on the
e space of probability measures on the space of trajectories.
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Aim of the talk

@ Discuss the general techniques used to prove the first type of
results.

References

@ Present the convergence of (1) to (2) on a simple toy model
using coupling techniques.
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@ Define the "right” distance on the space of probability measures
on the space of trajectories

@ Introduce a function ® on this space that associates to a
measure the law of the solution to a linearized version of the
SDEs (more detail on this later)

@ Show that this function ® has a unique fixed point.
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Wasserstein distance for continuous trajectories

Let 12 and v be two probability measures on C = C([0, T],RY). W
define the Wasserstein distance between them by

Dr(p,v) = inf{ sup_|w'(s) —w?(s)| A1dN(wh,w?)},  (4)
N “Jexe seo,T]

where [T probability measure on C x C such that its first marginal is u
and its second is v (I is called a coupling of i and v).

Properties

@ D7 is a distance on P(C).
e (P(C), D) is a complete metric space
@ D7 is nondecreasing in T.
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The linearized SDE

Let @ : P(C) — P(C) such that for all m, ®(m) is the law of the
solution of the SDE on RN:

Z(t) = X(0) + B(t) + /0 /R b(Z(s), y)m(dy) ds

The original SDE for reference
t
X(0) = X(0)+ B+ [ [ bX(s))(ay)ds,

with us is the law of X(s).
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® has a unique fixed point. I

Idea of proof

@ Show that D;(®(u), ®(v)) < G fot Ds(p,v) ds. (uses Gronwall's
lemma)
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@ Show a similar bound for iterations of ®.

o Conclude that (®"(u)), is a Cauchy sequence, from which it
follows that its limit is a fixed point of ®.
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to (2)

o Existence and uniqueness (in law and trajectorial) of the solution
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A toy model for proving convergence

To simplify calculations, let us consider the initial model with the
function b(x, y) = x — y. We then have the following SDEs:

Xk’N(t):Xk’N(O)+wk(t)+/0 (Xk’N(s)—%ZXj’N(s))ds (5)

J=1

k are independent BM.

v

@ The SDE is now linear

where w

@ Disregarding the noise, there is exponential convergence to the
mean position of the particles.
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The new intuitive limit process

The limit process now verifies the following SDE:

t

X (t) = X (0) + wk() + /0 (X*(s) — E[X“(s))ds,  (6)

k

where w” are independent BM.

Remarks

| A\

o Still nonlinearity at the limit (of McKean-Vlasov type)
@ There is invariance in law for all k.

<k L

o Given pg the law of X" (0), if po has a finite first moment, (6)
becomes equivalent to a linear SDE with an explicit solution
(Ornstein-Uhlenbeck process)
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The coupling

We consider the probability space Q = (R x C(R*,R))Y endowed
with (po ® W)Y with the real coordinates being the i.i.d. initial
conditions (denoted Y* hereafter) and the trajectory coordinates
being the i.i.d. Brownian motions (denoted BX). We construct on Q
the following processes:

@ the processes (th’N) verifiying

1 N

Xk (E) = YO+ (0)+ [ (XN(s)= S XN ds (7)

Jj=1

@ the processes (X, ) verifiying

<k

X (t) = Y*(0) + Bk(t)+/0t(7k(s) “EX“(s))ds  (8)

y
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The convergence theorem

Suppose that pg has a finite second moment vy.
For all 1 < k < N, for all finite T > 0,

\/NE[ sup IXk’N(t) —Yk(t)” <(
te[0,T]

1
Vo + E)TezT.
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Intuition for the proof

Exponential bound: use Gronwall's lemma. Here is a simple version
of it (that can be generalized to a much less stringent setting):

Let u and b be a nonnegative continuous functions on RT, let a be a
nonnegative constant (or nonnegative continuous function). If u
verifies the following integral inequality for all t € R*:

u(t) < a +/0 b(s)u(s)ds,

then
u(t) < aelo b(s)ds,




The proof

By the coupling, we have

Introduction

Well-posedness of <~k t —k 1 n . —
e | XV(t) - X (1)] < /0 IXM(s) = X ()] + 1= D (X M(s) = X'(s))
=1

13X () — X (s))] s

j=t

Let 3(t) = E[supeepo. 7y [X*M(£) = X" (£)]]. Then taking the
expectation in the equation above, we have:

(t) < 2/0t5(s) ds + /Ot Efl; > X' () — EX ()] ds
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The proof, continued

Let Du(t) = E[|2 20, X/(£) — E[X (1))]]. It is the first moment
mean of an empirical mean of centered independent r.v.s. By the
Cauchy-Schwarz inequality, we have:

D(t) < %var(yl(t)).

Recall that Yl(t) is the solution of an SDE with an explicit solution

(Ornstein-Uhlenbeck process). Taking the variance in that explicit
solution, we show that

var(XH(8)) < vo + %
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5(1:)32/0 5(s)ds+\/_(u0+ by,

Applying Gronwall’s lemma, the result follows

The proof, end
Finally, we have
t
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Consequence for the convergence

Note that (9) gives a control of the Wasserstein distance between the

laws of (X and (X7). Therefore, for all 1 < k < N, for all finite
t>0, L(XFN) = £(XL) when N — .
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Remark: stronger result

It is actually possible to prove the convergence of the empirical mean:

~k

)

when N — co.

Propagation of chaos

The previous result is usually called propagation of chaos because it
can be shown that in a certain sense, the asymptotic independence of
the N-particle system is equivalent to the weak convergence of the
empirical mean.
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Spatial generalizations

@ It is possible to introduce a spatial component to the
interactions by taking them of the form

N
557 K (i )X (), X (s)

j=1

with y; the spatial localization of the i-th particle and K the
kernel of spatial dependence. In this case, you have to consider
both the convergence of the processes X*N(s) to some limit
process and the convergence of %vazl dy, to a certain limit
distribution.

@ Another way to preserve the geometry of the N-particle system
is to consider replica mean-field limits, looking at the limit of M
replicas of the initial particle system with interactions uniformly
randomly routed in between the replicas when M goes to inﬁnity.A
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