Zap Stochastic Approximation and
Reinforcement Learning

Reading Group Network Theory
Lincs

Frangois Durand (NBLF)
Based on works by Ana Bugi¢ (Inria / ENS),
Adithya M. Devraj and Sean Meyn (University of Florida)

October 6, 2020

Zap Stochastic Approximation and RL

Outline

@ Motivation: Stochastic Approximation and RL
9 Zap Stochastic Approximation
e Application to Q-Learning

@ Conclusion

Motivation:
Stochastic Approximation and RL

Motivation: Stochastic Approximation and RL

What is Stochastic Approximation?
Problem

e W random variable, 6 € R< variable.
e f(O,W) ¢ R4,

o f(6):=E[f(6,W)].
Goal: find 6* s.t.

D¢

1/26

Motivation: Stochastic Approximation and RL

What is Stochastic Approximation?

Problem
o W random variable, § € R? variable.
o f(6,W)c R4
o f(0) :=E[f(0,W)].
Goal: find 0* s.t.
f(6*) =0.

Traditional example (with d = 1)
@ 0: dosage of a medicine (e.g. insulin).
o f(0,W): effect (e.g. blood sugar level — ideal blood sugar level).
o 0*: ideal dosage s.t. f(0*) = 0.

1/26

Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm

Principle

Initial estimate: 0y (arbitrary).
Update rule:

en—i—l =0, + an—i—lf(ena Wn—i—l),

where the step-size a4 is part of the algorithm design.

2/26

Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm

Principle

Initial estimate: 6y (arbitrary).
Update rule:
gn—i—l =0 + an—i—lf(ena Wn+1)7

where the step-size a4 is part of the algorithm design.

Traditional example (continued)
@ Try dosage 0y with patient 1.
o This gives effect f(6p, W1): a noisy version of f(6p).
o New estimated dosage 61 = 0y + aa f (6o, W1).
o Etc.

2/26

Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm: Illustration
9n+1 = 071, aF an+lf(0na Wn+l)

4 f(0) F(60, W)

3/26

Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm: Convergence
0n+1 = en aF an+lf(0na Wn+l)

The step-size satisfies:

° Zan:oo,
° Za%<oo.

Usually we take a,, = 1/n.

4/26

Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach
Problem

We want to estimate E[W], where W is a random variable.

D¢

5/26

Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach

Problem

We want to estimate E[W], where W is a random variable.

Conversion to SA problem

Let (6, W) =W — 0. Then F(6) = E[W] — 6.
We want to find 6* s.t. f(6*) = 0.

5/26

Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach

Problem

We want to estimate E[W], where W is a random variable.

Conversion to SA problem

Let (6, W) =W — 0. Then F(6) = E[W] — 6.
We want to find 6* s.t. f(6*) = 0.

Application of Robbins-Monro Algorithm

1
Ont1 =9n+n—+1(Wn+1 —0p)
n 1
= 0 W,
nl n+n+1 n+1

1 n+1

— > Wi = This is Monte-Carlo!
n+1 Pt

5/26

Motivation: Stochastic Approximation and RL

Many RL challenges are SA Problems Too

In Monte-Carlo, we want to solve E[IW — 6] = 0.
e W is new data / sample,
@ 6, is an old estimation,

@ On41 is the new estimation: 0,11 = 0, + ay1 * observed difference.

6/26

Motivation: Stochastic Approximation and RL

Many RL challenges are SA Problems Too

In Monte-Carlo, we want to solve E[IW — 6] = 0.
e W is new data / sample,

@ 0, is an old estimation,

@ On41 is the new estimation: 0,11 = 0, + ay1 * observed difference.

Many RL algorithms rely on a temporal difference (TD) term of the same
form. For example, for Q-Learning:

o New data / sample = ¢(X,,, U,) + S min, [Q" (Xp+1, uw)],
@ Old estimation = Q" (X, U,).
e New estimation = Q"1(X,,,U,,).

We will develop more on this in the section about Q-Learning.

6/26

Zap Stochastic Approximation

Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution 0* to

f(0):=E[f(0,W)] =0, 6OecR! f:RI - RY

7/26

Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution 0* to

f(0):=E[f(0,W)] =0, 6OecR! f:RI - RY

What makes this hard?

7/26

Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution 0* to

f(0):=E[f(0,W)] =0, 6OecR! f:RI - RY

What makes this hard?
@ The distribution of the random variable W may not be known.

@ Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different 6.

7/26

Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution 0* to

f(0):=E[f(0,W)] =0, 6OecR! f:RI - RY

What makes this hard?
@ The distribution of the random variable W may not be known.

@ Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different 6.

© The recursive algorithms we come up with are often slow, and their
variance may be infinite. We will see that it is typically the case for
Q-Learning, unfortunately.

7/26

Zap Stochastic Approximation

Convergence
F0) = E[f(6", W) =0

Robbins-Monro Algorithm (reminder): 0,11 = 6, + apnt1.f(0n, Wit1).

8/26

Zap Stochastic Approximation

Convergence
F0) = E[f(6", W) =0

Robbins-Monro Algorithm (reminder): 0,11 = 6, + apnt1.f(0n, Wit1).

Fla(t)

d
Analysis: 0* : stationary point of the ODE %az(t)

SA is a noisy Euler approximation:

0n+1 = 9n + an+1[f(0n) + An+1]

8/26

Zap Stochastic Approximation

Convergence
F0) = E[f(6", W) =0

Robbins-Monro Algorithm (reminder): 0,11 = 6, + apnt1.f(0n, Wit1).

Fla(t)

d
Analysis: 0* : stationary point of the ODE %az(t)

SA is a noisy Euler approximation:

0n+1 = 9n + Oln+1[f(0n) + An+1]

Stability of the ODE — li_)m 0, = 0".

8/26

Performance Criteria
SA recursion:

Oni1 = On + an1[f(0n) + Anyi]
Error sequence:

Dae
9/26

Zap Stochastic Approximation

Performance Criteria
SA recursion:

0n+1 =0, + an+1[f(9n) + An—i—l]

Error sequence:

0y, =6, —0"

Two standard approaches to evaluate performance,
@ Finite-n bound:

POl > £} < 7
@ Asymptotic covariance (CLT):

n—00

%= lim nE[énﬂ . ab, ~ N(0,%)

9/26

Zap Stochastic Approximation

Performance Criteria
SA recursion:

077,—1—1 =0, + an+1[f(9n) + An—i—l]

Error sequence:

0y, =6, —0"

Two standard approaches to evaluate performance,
@ Finite-n bound:

POl > £} < 7
@ Asymptotic covariance (CLT):

n—0o0

Y= lim nE[énﬂ . ab, ~ N(0,%)

9/26

Asymptotic Covariance
Y = lim %, = lim nE[§,0;]
n— oo n—o00
SA recursion:

Ont1 = 0p + an+1[f(9n) =+ An+1]

Dae
10/26

Asymptotic Covariance
Y = lim %, = lim nE[§,0;]
n— oo n—o00

Linearized SA recursion for the error sequence {6, }:

Ont1 ~ On + %{Aén + An+1}

Dae
10/26

Asymptotic Covariance
¥ = lim ¥, = lim nE[6,0;]
n— oo n—o00

Scaled, linearized SA recursion for the error sequence:

Vn+ 10,41 ~ /nby, + %{(A +10)v/nb,

1
}‘f’%An—l—l
A=4Lf(6)
n—i—l%\/ﬁﬁ-#ﬁ

Dae
10/26

Asymptotic Covariance
Y = lim %, = lim nE[§,0;]
n— oo n—o00
SA recursion for {¥,,}:

Em4%En+%“A+%DZn+EﬁA+%DT+2A}

A=2LF(0%)
YA = E[AnHA;H]

10/26

Zap Stochastic Approximation

Asymptotic Covariance
¥ = lim ¥, = lim nE[6,0;]

n—o0 n—o0

SA recursion for {¥,,}:

Tnt1 & Tn + H{(A+ 1D)T0 + a4+ 407+ 34
A= LT (0%)
YA = E[An114] 4]

Asymptotic Variance Theory
Q IfRe)(4) > —% for some eigenvalue then 33 is (typically) infinite
@ Ifall ReA(4) < —3, ¥ = lim ¥, solves the Lyapunov equation:

n—oo

0=(A+ DT+ S(A+ L)+ 2

10/26

Zap Stochastic Approximation

Optimal Asymptotic Covariance

Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d x d matrix gain sequence {G,, }:

9n+1 = en + an+1G7L+1f(‘9na Wn—l—l)

11/26

Zap Stochastic Approximation

Optimal Asymptotic Covariance

Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d x d matrix gain sequence {G,, }:

9n+1 = en + an+1G7L+1f(9na Wn—l—l)

Assume it converges, and linearize:

én+1 ~ én + an—l—lG(Aén + An—i—l)a A= — 7(9*)

11/26

Zap Stochastic Approximation

Optimal Asymptotic Covariance

Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d x d matrix gain sequence {G,, }:
9n+1 =0, + an+1G7L+1f(‘9na Wn—l—l)

Assume it converges, and linearize:

én—f—l ~ 0, + an-{—lG(Aén + An+1), A= —f(0")

Asymptotic Variance Theory
o If ReA(GA) > —% for some eigenvalue then X is (typically) infinite
o If ReA(GA) < —% for all, ©“ solves the Lyapunov equation:

0= (GA+31)SC +X9(GA+ LT+ GEAGT

11/26

Zap Stochastic Approximation

Optimal Asymptotic Covariance

Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d x d matrix gain sequence {G,, }:
9n+1 =0, + an+1G7L+1f(‘9na Wn—l—l)

Assume it converges, and linearize:

én—f—l ~ 0, + an-{—lG(Aén + An+1), A= —f(0")

Optimal Matrix Gain: G* := —A~!
@ Resembles Newton-Raphson
o ltisoptimal: Y*=G*SAG*T <X any other G

0= (GA+ 312 +X9(GA+ L))"+ GSAGT

11/26

Zap Stochastic Approximation

Optimal Variance and Stochastic Newton Raphson (SNR)
fO)=40-b 5(f(6) =4

Stochastic Newton Raphson: Matrix gain algorithm with
G, ~G*=—-A"1
SNR Algorithm:

9n+1 = en + an—i—lan(‘gn, Wn—i—l)
n+1
1 d
Z Ak An+1 = _f(en’ Wn—l—l)
k=1

Gl=-

n+1 do

12/26

Zap Stochastic Approximation

Optimal Variance and Stochastic Newton Raphson (SNR)
fO)=40-b 5(f(6) =4

Stochastic Newton Raphson: Matrix gain algorithm with
G, ~G*=—-A"1
SNR Algorithm:

0n+1 = gn + an-{—l(_An—i-l)ilf(ena Wn+1)
A\n—&—l - A\n + an+1(An+1 - A\n)

12/26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR

A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)

N d -
Requires A, ~ A(6,) = T (6,)

13/26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR
A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)
0n+1 = ‘9n + an+1(_fz{n+1)_1f(9na WnJrl)

~ ~ ~ d
An+1 = An + ’7n+1(An+1 - An)a An+1 =

@f(eﬂn Wn+1)

13/26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR

A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)
0n+1 = an + an+1(_1/4\n+1)_1f(9n5 WnJrl)
d

A\n+1 = A\n + ’7n+1(An+1 - A\n)a An+1 = @f(eny Wn+1)

Enﬂ ~ A(0,) requires high-gain, o, 0, n — 00
n

13/26

Optimal Variance and Zap-SNR

A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)
9n+1 = an + anJrl(*A\nJrl)_lf(ena WnJrl)
d

A\n+1 = A\n + '7n+1(An+1 - A\n)a An+1 = @f(ena Wn+1)

Enﬂ ~ A(0,) requires high-gain, o, 0, n — 00
n

Always: ay, = 1/n. Numerics that follow: 7, = (1/n)”, p € (0.5,1)

13/26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR

A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)
0n+1 = ‘9n + an+1(_fz{n+1)_1f(9na WnJrl)

—~ —~ ~ d
An+1 = An + ’7n+1(An+1 - An)a An+1 = @f(eny Wn+1)
ﬁnﬂ ~ A(0,) requires high-gain, o, 0, n — 00
ODE for Zap-SNR
d 1= d -
Ca=—[A@)) @), A= (@)

13/26

Application to Q-Learning

Stochastic Optimal Control

MDP Model
X is a stationary controlled Markov chain, with input U.
o For all states = and sets A4,
P{Xn+1 € A| X,, =z, U, = u,and prior history} = P,(z, A)
@ ¢: Xx U—=Ris a cost function

@ (8 < 1 a discount factor

14/26

Stochastic Optimal Control

MDP Model
X is a stationary controlled Markov chain, with input U.
o For all states = and sets A4,
P{Xn+1 € A| X,, =z, U, = u,and prior history} = P,(z, A)
@ ¢: Xx U—=Ris a cost function

@ (8 < 1 a discount factor

Q-function:
mmZﬁ”E (X, Uyn) | Xo = 2, Uy = 1

14/26

Stochastic Optimal Control

MDP Model
X is a stationary controlled Markov chain, with input U.
o For all states = and sets A4,
P{Xn+1 € A| X,, =z, U, = u,and prior history} = P,(z, A)
@ ¢: Xx U—=Ris a cost function

@ (8 < 1 a discount factor

Q-function:
mmZﬂ”E (X, Uyn) | Xo = 2, Uy = 1

Bellman equation:
Q*(z,u) = c(z,u) + BE[miln Q" (Xn41,v) | Xn =, Up = u]

14/26

Stochastic Optimal Control Seen As an SA Problem
Problem

Find function Q* that solves

E[e(Xn, Un) + BQ* (Xnt1) — Q* (X, Un)] = 0

D¢

15/26

Stochastic Optimal Control Seen As an SA Problem

Problem
Find function @Q* that solves

E[e(Xn, Un) + BQ* (Xnt1) — Q* (X, Un)] = 0

Q-learning
Given {Q? : 6 € R}, find 6* that solves

E[(C(Xna Un) + /BQQ*((XTH-I) - Qg*((Xn-/ U’n))Cn] = O

The family {Q%} and “eligibility vectors’ {(,}, ¢, € R? are part of
algorithm design.

15/26

Stochastic Optimal Control Seen As an SA Problem

Problem
Find function @Q* that solves

E[e(Xn, Un) + BQ* (Xnt1) — Q* (X, Un)] = 0

Q-learning
Given {Q? : 6 € R}, find 6* that solves

E[(C(Xna Un) + /BQQ*((XTH-I) - Qg*((Xn-/ Un))Cn] = O

The family {Q%} and “eligibility vectors’ {(,}, ¢, € R? are part of

algorithm design.
Example: ¢, = VoQ'(X,,, Uy)

v

15/26

Stochastic Optimal Control Seen As an SA Problem

This is Stochastic Approximation!

Q-learning
Given {Q? : 6 € R}, find 0* that solves

E[(c(Xn,Un) + BQ" (Xns+1) — Q7 (X0, Un))] =0

The family {Q%} and “eligibility vectors’ {(,}, ¢, € R are part of
algorithm design.
Example: ¢, = VoQ%(X,.,U,)

v

15/26

Application to Q-Learning

Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

E[(C(Xnv Un) + BQG* (Xn—l—l) - Qe* (Xna Un))Cn] =0

Watkins' @-learning (= “Vanilla” Tabular Q-Learning)

E[(C(Xﬂv Uﬂ) + BQG* (Xn-‘rl) - Qe* (XTL7 Un))Cn] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

16 /26

Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

E[(C(XTH Un) + 5Q9* (Xn-‘rl) - Qe* (Xm Un))(n] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

Algorithm:
en—l—l = gn + appi (C(Xna Un) + 5Q9* (XnJrl) - Qe* (Xna Un))Cn

16 /26

Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

E[(C(XTH Un) + 5Q9* (Xn-‘rl) - Qe* (Xny Un))(n] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

Converges, but has infinite asymptotic variance if 5 > %:
Amax (A(0%)) > —3

[Devraj & Meyn, 2017]

16 /26

Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

E[(C(XTH Un) + 5Q9* (Xn-‘rl) - Qe* (Xny Un))(n] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

Convergence rate for 5 > %:
O(1/n' ")

[Devraj & Meyn, 2017]

16 /26

Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E[(c(Xn, Un) +6Q" (Xns1) = Q@ (X, Un))Gu] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

Convergence rate for 5 > %:
O(1/n' ")

[Devraj & Meyn, 2017]

16 /26

Application to Q-Learning

Linear Parametrization of Q-Learning

Definition
Q%(z,u) = 0T+ (x,u), where:
e 0 € R? denotes the parameter vector,

@ (x,u) represents the features of (x,u).

17/26

Application to Q-Learning

Linear Parametrization of Q-Learning

Definition
Q%(z,u) = 0T+ (x,u), where:
e 0 € R? denotes the parameter vector,

@ (x,u) represents the features of (x,u).

Particular Case: Tabular Q-Learning
o Yi(z,u) =I(z = 2%, u = u'),
o (2%, u’) enumerate all state-action pairs,

e 1 < <d, where d = |states| * |actions|.

17/26

Q(A) Algorithm

(1) dn+1 = C(Xng Un) + ﬁggn (XnJrl) - Qen (Xna Un)
Q 01 =0+ any1Gudngr
o Cn-i—l -)\/BCn + 1/}(n+1, n+1)

18/26

Zap-Q(A) Algorithm

Q dpt1 =c(Xn,Up) + 5Q0n (Xn41) — Q™ (X0, Uy)
Q Ay = Qn[ﬁl/’(Xn-ﬁ-la ?bn(Xn-i-l)) - w(Xna Un)]T
© Api1 = Ay +ynr1[Ang1 — 4y

Q 0hp1=0, +an+lA\7:_il_1Cn n+1

Q GCut1 = ABGn + ¥V(Xn+1, Unt1)

19/26

Zap-Q(A) Algorithm: Issues and Possible Solutions

Work in Progress...

Issue 1: A\n+1 is proven to be eventually invertible, but is generally not
invertible during the early stages of the algorithm.

= Use Moore-Penrose pseudoinverse A;{H.

20/26

Zap-Q(A) Algorithm: Issues and Possible Solutions

Work in Progress...

Issue 1: A\n+1 is proven to be eventually invertible, but is generally not
invertible during the early stages of the algorithm.

= Use Moore-Penrose pseudoinverse A:H.

Issue 2: Computing f/l\;}rl (or ETJLFH) is expensive.
= In fact we do not need A, | itself but only A}, ¢,. This
can be done by solving a least squares problem: find X that
minimizes ||Ap+1X — ull2. Still expensive...
= Since A\n+1 is updated by adding a matrix of rank 1 at each

step, it can be computed cheaply by
Sherman-Morrison-Woodbury formula.

20/26

Conclusion

Conclusion

Conclusion

Take-aways:

@ Reinforcement Learning is not just cursed by dimension,
but also by variance!

@ RL algorithms in their raw form are NO GOOD without careful gain
selection.

21/26

Conclusion

Conclusion

Take-aways:

@ Reinforcement Learning is not just cursed by dimension,
but also by variance!

@ RL algorithms in their raw form are NO GOOD without careful gain
selection.

Current/future works:
@ Implementation in the Stable-Baselines framework.

@ Q-learning with function-approximation: obtain conditions for a stable
algorithm in a general setting.

21/26

This Presentation

@ A. M. Devraj and S. P. Meyn, Zap Q-learning. Advances in Neural
Information Processing Systems (NIPS). Dec. 2017.

@ A. M. Devraj and S. P. Meyn, Fastest convergence for Q-learning. Available
on ArXiv. Jul. 2017.

@ A. M. Devraj, A. Busi¢, and S. Meyn. Optimal Matrix Momentum

Stochastic Approximation and Applications to Q-learning. ArXiv e-prints,
Feb. 2019.

S. Chen, A. M. Devraj, A. Bugi¢, and S. Meyn. Zap Q-learning for Optimal
Stopping Time Problems. ArXiv e-prints, Apr. 2019.

@ S. Chen, A. M. Devraj, A. Bugi¢, and S. Meyn. Zap Q-learning with
Nonlinear Function Approximation. ArXiv e-prints, Oct. 2019.

22/26

References

Selected References |

(1]

(2]

(3]

(4]

(5]

(6]

(7]

A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv , July 2017
(extended version of NIPS 2017).

A. M. Devraj, A. Busi¢ and S. P. Meyn. Zap Meets Momentum: Stochastic
Approximation Algorithms with Optimal Convergence Rate. ArXiv , September 2018.

A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations, volume 22 of Applications of Mathematics (New York). Springer-Verlag,
Berlin, 1990. Translated from the French by Stephen S. Wilson.

V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press (jointly), Delhi, India and Cambridge, UK,
2008.

V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447-469, 2000.

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Published in the Cambridge
Mathematical Library.

S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
See last chapter on simulation and average-cost TD learning

23/26

https://arxiv.org/abs/1707.03770
https://arxiv.org/abs/1809.06277
https://arxiv.org/abs/1809.06277

References

Selected References |l

(8]

(9]

(10]

(11]

(12]

(13]

(14]

D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236-245, 1985.

D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika (in Russian). translated in Automat. Remote Control, 51 (1991), pages
98-107, 1990.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838-855, 1992.

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964.

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k?). In Soviet Mathematics Doklady, 1983.

V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796-819, 2004.

24/26

References

Selected References llI

(15]

(16]

(17]
(18]

(9]

[20]

(1]

(22]

E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, pages 451-459. Curran Associates, Inc., 2011.

C. Szepesvari. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279-292, 1992.

R. S. Sutton.Learning to predict by the methods of temporal differences. Mach. Learn.,
3(1):9-44, 1988

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674-690, 1997.

C. Szepesvari. The asymptotic convergence-rate of Q-learning. In Proceedings of the 10th
Internat. Conf. on Neural Info. Proc. Systems, pages 1064-1070. MIT Press, 1997.

M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In
Advances in Neural Information Processing Systems, 2011.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1-25, 2003.

25 /26

References

Selected References |V

(23]

(24]

(25]

26]

(27]

(28]

[29]

D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for
neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control. Wiley, 2011.

J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives. IEEE Trans. Automat. Control, 44(10):1840-1851, 1999.

D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning. Discrete Event Dynamic Systems: Theory and
Applications, 16(2):207-239, 2006.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Mach. Learn., 22(1-3):33-57, 1996.

J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn.,
49(2-3):233-246, 2002.

A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dyn. Systems: Theory and Appl., 13(1-2):79-110, 2003.

P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin's minimum principle. In IEEE
Conference on Decision and Control, pages 3598—-3605, Dec. 2009.

26 /26

	Motivation: Stochastic Approximation and RL
	Zap Stochastic Approximation
	Application to Q-Learning
	Conclusion
	References

