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Motivation: Stochastic Approximation and RL

What is Stochastic Approximation?

Problem

W random variable, θ ∈ Rd variable.

f(θ,W ) ∈ Rd.

f̄(θ) := E[f(θ,W )].

Goal: find θ∗ s.t.
f̄(θ∗) = 0.

Traditional example (with d = 1)

θ: dosage of a medicine (e.g. insulin).

f(θ,W ): effect (e.g. blood sugar level − ideal blood sugar level).

θ∗: ideal dosage s.t. f̄(θ∗) = 0.
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Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm

Principle

Initial estimate: θ0 (arbitrary).
Update rule:

θn+1 = θn + αn+1f(θn,Wn+1),

where the step-size αn+1 is part of the algorithm design.

Traditional example (continued)

Try dosage θ0 with patient 1.

This gives effect f(θ0,W1): a noisy version of f̄(θ0).

New estimated dosage θ1 = θ0 + α1f(θ0,W1).

Etc.
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Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm: Illustration
θn+1 = θn + αn+1f(θn,Wn+1)

θ

f̄(θ)

Slope
1/α

1

θ0

• f(θ0,W1)

θ1

•

θ2

•

θ3

•
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Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm: Convergence
θn+1 = θn + αn+1f(θn,Wn+1)

The step-size satisfies:∑
αn =∞,∑
α2
n <∞.

Usually we take αn = 1/n.
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Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach

Problem

We want to estimate E[W ], where W is a random variable.

Conversion to SA problem

Let f(θ,W ) = W − θ. Then f̄(θ) = E[W ]− θ.
We want to find θ∗ s.t. f̄(θ∗) = 0.

Application of Robbins-Monro Algorithm

θn+1 = θn +
1

n+ 1
(Wn+1 − θn)

=
n

n+ 1
θn +

1

n+ 1
Wn+1

=
1

n+ 1

n+1∑
k=1

Wk ⇒ This is Monte-Carlo!
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Motivation: Stochastic Approximation and RL

Many RL challenges are SA Problems Too

In Monte-Carlo, we want to solve E[W − θ] = 0.

W is new data / sample,

θn is an old estimation,

θn+1 is the new estimation: θn+1 = θn + αn+1 ∗ observed difference.

Many RL algorithms rely on a temporal difference (TD) term of the same
form. For example, for Q-Learning:

New data / sample = c(Xn, Un) + βminu[Qn(Xn+1, u)],

Old estimation = Qn(Xn, Un).

New estimation = Qn+1(Xn, Un).

We will develop more on this in the section about Q-Learning.
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Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution θ∗ to

f̄(θ) := E[f(θ,W )] = 0 , θ ∈ Rd , f̄ : Rd → Rd

What makes this hard?

1 The distribution of the random variable W may not be known.

2 Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different θ.

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite. We will see that it is typically the case for
Q-Learning, unfortunately.
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Zap Stochastic Approximation

Convergence
f̄(θ∗) = E[f(θ∗,W )] = 0

Robbins-Monro Algorithm (reminder): θn+1 = θn + αn+1f(θn,Wn+1).

Analysis: θ∗ : stationary point of the ODE
d

dt
x(t) = f̄(x(t))

SA is a noisy Euler approximation:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Stability of the ODE =⇒ lim
n→∞

θn = θ∗.
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Zap Stochastic Approximation

Performance Criteria

SA recursion:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence:
θ̃n := θn − θ∗

Two standard approaches to evaluate performance,

1 Finite-n bound:
P{‖θ̃n‖ ≥ ε} ≤ ?
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2 Asymptotic covariance (CLT):

Σ := lim
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nE
[
θ̃nθ̃

T
n

]
,

√
nθ̃n ≈ N(0,Σ)
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Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
SA recursion:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]
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Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
Linearized SA recursion for the error sequence {θ̃n}:

θ̃n+1 ≈ θ̃n + 1
n

{
Aθ̃n + ∆n+1

}
A = d

dθ f̄ (θ∗)
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Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
Scaled, linearized SA recursion for the error sequence:

√
n+ 1θ̃n+1 ≈

√
nθ̃n + 1

n

{
(A+ 1

2I)
√
nθ̃n

}
+

1√
n

∆n+1

A = d
dθ f̄ (θ∗)√

n+ 1 ≈
√
n+ 1

2
√
n
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Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
SA recursion for {Σn}:

Σn+1 ≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}
A = d

dθ f̄ (θ∗)
Σ∆ = E[∆n+1∆T

n+1]
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Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim
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nE

[
θ̃nθ̃

T
n

]
SA recursion for {Σn}:

Σn+1 ≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}
A = d

dθ f̄ (θ∗)
Σ∆ = E[∆n+1∆T

n+1]

Asymptotic Variance Theory

1 If Reλ(A) ≥ −1
2 for some eigenvalue then Σ is (typically) infinite

2 If all Reλ(A) < −1
2 , Σ = lim

n→∞
Σn solves the Lyapunov equation:

0 = (A + 1
2I)Σ + Σ(A + 1

2I)T + Σ∆
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Zap Stochastic Approximation

Optimal Asymptotic Covariance
Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d× d matrix gain sequence {Gn}:

θn+1 = θn + αn+1Gn+1f(θn,Wn+1)

Assume it converges, and linearize:

θ̃n+1 ≈ θ̃n + αn+1G
(
Aθ̃n + ∆n+1

)
, A =

d

dθ
f̄ (θ∗)
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Zap Stochastic Approximation

Optimal Asymptotic Covariance
Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d× d matrix gain sequence {Gn}:
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Assume it converges, and linearize:

θ̃n+1 ≈ θ̃n + αn+1G
(
Aθ̃n + ∆n+1

)
, A =

d

dθ
f̄ (θ∗)

Optimal Matrix Gain: G∗ :=−A−1

Resembles Newton-Raphson

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

0 = (GA+ 1
2I)ΣG + ΣG(GA+ 1

2I)T +GΣ∆G
T
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Zap Stochastic Approximation

Optimal Variance and Stochastic Newton Raphson (SNR)
f̄(θ) = Aθ − b ∂

∂θ
(f̄(θ)) = A

Stochastic Newton Raphson: Matrix gain algorithm with
Gn ≈ G∗ = −A−1: A = − ∂

∂θ f̄(θ)

SNR Algorithm:

θn+1 = θn + αn+1Gnf(θn,Wn+1)

G−1
n = − 1

n+ 1

n+1∑
k=1

Ak An+1 =
d

dθ
f(θn,Wn+1)
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Zap Stochastic Approximation

Optimal Variance and Zap-SNR
A(θ) = ∂

∂θ
f̄(θ) is a function of θ

Zap-SNR (designed to emulate deterministic Newton-Raphson)

Requires Ân+1 ≈ A(θn) :=
d

dθ
f̄ (θn)

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Wn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 =
d

dθ
f(θn,Wn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)
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Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)
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Application to Q-Learning



Application to Q-Learning

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain, with input U .

For all states x and sets A,

P{Xn+1 ∈ A | Xn = x, Un = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor

Q-function:

Q∗(x, u) = min
U

∞∑
n=0

βnE[c(Xn, Un) | X0 = x, U0 = u]

Bellman equation:

Q∗(x, u) = c(x, u) + βE
[

min
u′

Q∗(Xn+1, u
′) | Xn = x, Un = u

]

14 / 26
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Application to Q-Learning

Stochastic Optimal Control Seen As an SA Problem

Problem

Find function Q∗ that solves

E
[
c(Xn, Un) + βQ∗(Xn+1)−Q∗(Xn, Un)

]
= 0

Q-learning

Given {Qθ : θ ∈ Rd}, find θ∗ that solves

E
[(
c(Xn, Un) + βQθ

∗
((Xn+1)−Qθ∗((Xn, Un)

)
ζn
]

= 0

The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design.
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Application to Q-Learning

Stochastic Optimal Control Seen As an SA Problem
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Watkins’ Q-learning (= “Vanilla” Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E
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c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn := ψ(Xn, Un)

ψi(x, u) := I{x = xi, u = ui} (complete basis)
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Converges, but has infinite asymptotic variance if β > 1
2 :

λmax

(
A(θ∗)

)
> −1

2

[Devraj & Meyn, 2017]
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Application to Q-Learning

Linear Parametrization of Q-Learning

Definition

Qθ(x, u) = θTψ(x, u), where:

θ ∈ Rd denotes the parameter vector,

ψ(x, u) represents the features of (x, u).

Particular Case: Tabular Q-Learning

ψi(x, u) = I(x = xi, u = ui),

(xi, ui) enumerate all state-action pairs,

1 ≤ i ≤ d, where d = |states| ∗ |actions|.
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Application to Q-Learning

Q(λ) Algorithm

1 dn+1 = c(Xn, Un) + βQθn(Xn+1)−Qθn(Xn, Un)

2 θn+1 = θn + αn+1ζndn+1

3 ζn+1 = λβζn + ψ(Xn+1, Un+1)
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Application to Q-Learning

Zap-Q(λ) Algorithm

1 dn+1 = c(Xn, Un) + βQθn(Xn+1)−Qθn(Xn, Un)

2 An+1 = ζn[βψ(Xn+1, φn(Xn+1))− ψ(Xn, Un)]T

3 Ân+1 = Ân + γn+1[An+1 − Ân]

4 θn+1 = θn + αn+1Â
−1
n+1ζndn+1

5 ζn+1 = λβζn + ψ(Xn+1, Un+1)
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Application to Q-Learning

Zap-Q(λ) Algorithm: Issues and Possible Solutions
Work in Progress...

Issue 1: Ân+1 is proven to be eventually invertible, but is generally not
invertible during the early stages of the algorithm.

⇒ Use Moore-Penrose pseudoinverse Â+
n+1.

Issue 2: Computing Â−1
n+1 (or Â+

n+1) is expensive.

⇒ In fact we do not need Â+
n+1 itself but only Â+

n+1ζn. This
can be done by solving a least squares problem: find X that
minimizes ‖Ân+1X − ζn‖2. Still expensive...

⇒ Since Ân+1 is updated by adding a matrix of rank 1 at each
step, it can be computed cheaply by
Sherman-Morrison-Woodbury formula.
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n+1.

Issue 2: Computing Â−1
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n+1) is expensive.

⇒ In fact we do not need Â+
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Conclusion



Conclusion

Conclusion

Take-aways:

Reinforcement Learning is not just cursed by dimension,
but also by variance!

RL algorithms in their raw form are NO GOOD without careful gain
selection.

Current/future works:

Implementation in the Stable-Baselines framework.

Q-learning with function-approximation: obtain conditions for a stable
algorithm in a general setting.
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A. M. Devraj, A. Bušić, and S. Meyn. Optimal Matrix Momentum
Stochastic Approximation and Applications to Q-learning. ArXiv e-prints,
Feb. 2019.
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