
Zap Stochastic Approximation and
Reinforcement Learning

Reading Group Network Theory

Lincs

François Durand (NBLF)
Based on works by Ana Bušić (Inria / ENS),

Adithya M. Devraj and Sean Meyn (University of Florida)

October 6, 2020

Zap Stochastic Approximation and RL
Outline

1 Motivation: Stochastic Approximation and RL

2 Zap Stochastic Approximation

3 Application to Q-Learning

4 Conclusion

Motivation:
Stochastic Approximation and RL

Motivation: Stochastic Approximation and RL

What is Stochastic Approximation?

Problem

W random variable, θ ∈ Rd variable.

f(θ,W) ∈ Rd.

f̄(θ) := E[f(θ,W)].

Goal: find θ∗ s.t.
f̄(θ∗) = 0.

Traditional example (with d = 1)

θ: dosage of a medicine (e.g. insulin).

f(θ,W): effect (e.g. blood sugar level − ideal blood sugar level).

θ∗: ideal dosage s.t. f̄(θ∗) = 0.

1 / 26

Motivation: Stochastic Approximation and RL

What is Stochastic Approximation?

Problem

W random variable, θ ∈ Rd variable.

f(θ,W) ∈ Rd.

f̄(θ) := E[f(θ,W)].

Goal: find θ∗ s.t.
f̄(θ∗) = 0.

Traditional example (with d = 1)

θ: dosage of a medicine (e.g. insulin).

f(θ,W): effect (e.g. blood sugar level − ideal blood sugar level).

θ∗: ideal dosage s.t. f̄(θ∗) = 0.

1 / 26

Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm

Principle

Initial estimate: θ0 (arbitrary).
Update rule:

θn+1 = θn + αn+1f(θn,Wn+1),

where the step-size αn+1 is part of the algorithm design.

Traditional example (continued)

Try dosage θ0 with patient 1.

This gives effect f(θ0,W1): a noisy version of f̄(θ0).

New estimated dosage θ1 = θ0 + α1f(θ0,W1).

Etc.

2 / 26

Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm

Principle

Initial estimate: θ0 (arbitrary).
Update rule:

θn+1 = θn + αn+1f(θn,Wn+1),

where the step-size αn+1 is part of the algorithm design.

Traditional example (continued)

Try dosage θ0 with patient 1.

This gives effect f(θ0,W1): a noisy version of f̄(θ0).

New estimated dosage θ1 = θ0 + α1f(θ0,W1).

Etc.

2 / 26

Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm: Illustration
θn+1 = θn + αn+1f(θn,Wn+1)

θ

f̄(θ)

Slope
1/α

1

θ0

• f(θ0,W1)

θ1

•

θ2

•

θ3

•

3 / 26

Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm: Convergence
θn+1 = θn + αn+1f(θn,Wn+1)

The step-size satisfies:∑
αn =∞,∑
α2
n <∞.

Usually we take αn = 1/n.

4 / 26

Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach

Problem

We want to estimate E[W], where W is a random variable.

Conversion to SA problem

Let f(θ,W) = W − θ. Then f̄(θ) = E[W]− θ.
We want to find θ∗ s.t. f̄(θ∗) = 0.

Application of Robbins-Monro Algorithm

θn+1 = θn +
1

n+ 1
(Wn+1 − θn)

=
n

n+ 1
θn +

1

n+ 1
Wn+1

=
1

n+ 1

n+1∑
k=1

Wk ⇒ This is Monte-Carlo!

5 / 26

Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach

Problem

We want to estimate E[W], where W is a random variable.

Conversion to SA problem

Let f(θ,W) = W − θ. Then f̄(θ) = E[W]− θ.
We want to find θ∗ s.t. f̄(θ∗) = 0.

Application of Robbins-Monro Algorithm

θn+1 = θn +
1

n+ 1
(Wn+1 − θn)

=
n

n+ 1
θn +

1

n+ 1
Wn+1

=
1

n+ 1

n+1∑
k=1

Wk ⇒ This is Monte-Carlo!

5 / 26

Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach

Problem

We want to estimate E[W], where W is a random variable.

Conversion to SA problem

Let f(θ,W) = W − θ. Then f̄(θ) = E[W]− θ.
We want to find θ∗ s.t. f̄(θ∗) = 0.

Application of Robbins-Monro Algorithm

θn+1 = θn +
1

n+ 1
(Wn+1 − θn)

=
n

n+ 1
θn +

1

n+ 1
Wn+1

=
1

n+ 1

n+1∑
k=1

Wk ⇒ This is Monte-Carlo!

5 / 26

Motivation: Stochastic Approximation and RL

Many RL challenges are SA Problems Too

In Monte-Carlo, we want to solve E[W − θ] = 0.

W is new data / sample,

θn is an old estimation,

θn+1 is the new estimation: θn+1 = θn + αn+1 ∗ observed difference.

Many RL algorithms rely on a temporal difference (TD) term of the same
form. For example, for Q-Learning:

New data / sample = c(Xn, Un) + βminu[Qn(Xn+1, u)],

Old estimation = Qn(Xn, Un).

New estimation = Qn+1(Xn, Un).

We will develop more on this in the section about Q-Learning.

6 / 26

Motivation: Stochastic Approximation and RL

Many RL challenges are SA Problems Too

In Monte-Carlo, we want to solve E[W − θ] = 0.

W is new data / sample,

θn is an old estimation,

θn+1 is the new estimation: θn+1 = θn + αn+1 ∗ observed difference.

Many RL algorithms rely on a temporal difference (TD) term of the same
form. For example, for Q-Learning:

New data / sample = c(Xn, Un) + βminu[Qn(Xn+1, u)],

Old estimation = Qn(Xn, Un).

New estimation = Qn+1(Xn, Un).

We will develop more on this in the section about Q-Learning.

6 / 26

Zap Stochastic Approximation

Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution θ∗ to

f̄(θ) := E[f(θ,W)] = 0 , θ ∈ Rd , f̄ : Rd → Rd

What makes this hard?

1 The distribution of the random variable W may not be known.

2 Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different θ.

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite. We will see that it is typically the case for
Q-Learning, unfortunately.

7 / 26

Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution θ∗ to

f̄(θ) := E[f(θ,W)] = 0 , θ ∈ Rd , f̄ : Rd → Rd

What makes this hard?

1 The distribution of the random variable W may not be known.

2 Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different θ.

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite. We will see that it is typically the case for
Q-Learning, unfortunately.

7 / 26

Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution θ∗ to

f̄(θ) := E[f(θ,W)] = 0 , θ ∈ Rd , f̄ : Rd → Rd

What makes this hard?

1 The distribution of the random variable W may not be known.

2 Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different θ.

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite. We will see that it is typically the case for
Q-Learning, unfortunately.

7 / 26

Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution θ∗ to

f̄(θ) := E[f(θ,W)] = 0 , θ ∈ Rd , f̄ : Rd → Rd

What makes this hard?

1 The distribution of the random variable W may not be known.

2 Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different θ.

3 The recursive algorithms we come up with are often slow, and their
variance may be infinite. We will see that it is typically the case for
Q-Learning, unfortunately.

7 / 26

Zap Stochastic Approximation

Convergence
f̄(θ∗) = E[f(θ∗,W)] = 0

Robbins-Monro Algorithm (reminder): θn+1 = θn + αn+1f(θn,Wn+1).

Analysis: θ∗ : stationary point of the ODE
d

dt
x(t) = f̄(x(t))

SA is a noisy Euler approximation:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Stability of the ODE =⇒ lim
n→∞

θn = θ∗.

8 / 26

Zap Stochastic Approximation

Convergence
f̄(θ∗) = E[f(θ∗,W)] = 0

Robbins-Monro Algorithm (reminder): θn+1 = θn + αn+1f(θn,Wn+1).

Analysis: θ∗ : stationary point of the ODE
d

dt
x(t) = f̄(x(t))

SA is a noisy Euler approximation:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Stability of the ODE =⇒ lim
n→∞

θn = θ∗.

8 / 26

Zap Stochastic Approximation

Convergence
f̄(θ∗) = E[f(θ∗,W)] = 0

Robbins-Monro Algorithm (reminder): θn+1 = θn + αn+1f(θn,Wn+1).

Analysis: θ∗ : stationary point of the ODE
d

dt
x(t) = f̄(x(t))

SA is a noisy Euler approximation:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Stability of the ODE =⇒ lim
n→∞

θn = θ∗.

8 / 26

Zap Stochastic Approximation

Performance Criteria

SA recursion:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence:
θ̃n := θn − θ∗

Two standard approaches to evaluate performance,

1 Finite-n bound:
P{‖θ̃n‖ ≥ ε} ≤ ?

9 / 26

Zap Stochastic Approximation

Performance Criteria

SA recursion:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence:
θ̃n := θn − θ∗

Two standard approaches to evaluate performance,

1 Finite-n bound:
P{‖θ̃n‖ ≥ ε} ≤ ?

2 Asymptotic covariance (CLT):

Σ := lim
n→∞

nE
[
θ̃nθ̃

T
n

]
,

√
nθ̃n ≈ N(0,Σ)

9 / 26

Zap Stochastic Approximation

Performance Criteria

SA recursion:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence:
θ̃n := θn − θ∗

Two standard approaches to evaluate performance,

1 Finite-n bound:
P{‖θ̃n‖ ≥ ε} ≤ ?

2 Asymptotic covariance (CLT):

Σ := lim
n→∞

nE
[
θ̃nθ̃

T
n

]
,

√
nθ̃n ≈ N(0,Σ)

9 / 26

Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
SA recursion:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

10 / 26

Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
Linearized SA recursion for the error sequence {θ̃n}:

θ̃n+1 ≈ θ̃n + 1
n

{
Aθ̃n + ∆n+1

}
A = d

dθ f̄ (θ∗)

10 / 26

Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
Scaled, linearized SA recursion for the error sequence:

√
n+ 1θ̃n+1 ≈

√
nθ̃n + 1

n

{
(A+ 1

2I)
√
nθ̃n

}
+

1√
n

∆n+1

A = d
dθ f̄ (θ∗)√

n+ 1 ≈
√
n+ 1

2
√
n

10 / 26

Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
SA recursion for {Σn}:

Σn+1 ≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}
A = d

dθ f̄ (θ∗)
Σ∆ = E[∆n+1∆T

n+1]

10 / 26

Zap Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃nθ̃

T
n

]
SA recursion for {Σn}:

Σn+1 ≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}
A = d

dθ f̄ (θ∗)
Σ∆ = E[∆n+1∆T

n+1]

Asymptotic Variance Theory

1 If Reλ(A) ≥ −1
2 for some eigenvalue then Σ is (typically) infinite

2 If all Reλ(A) < −1
2 , Σ = lim

n→∞
Σn solves the Lyapunov equation:

0 = (A + 1
2I)Σ + Σ(A + 1

2I)T + Σ∆

10 / 26

Zap Stochastic Approximation

Optimal Asymptotic Covariance
Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d× d matrix gain sequence {Gn}:

θn+1 = θn + αn+1Gn+1f(θn,Wn+1)

Assume it converges, and linearize:

θ̃n+1 ≈ θ̃n + αn+1G
(
Aθ̃n + ∆n+1

)
, A =

d

dθ
f̄ (θ∗)

11 / 26

Zap Stochastic Approximation

Optimal Asymptotic Covariance
Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d× d matrix gain sequence {Gn}:

θn+1 = θn + αn+1Gn+1f(θn,Wn+1)

Assume it converges, and linearize:

θ̃n+1 ≈ θ̃n + αn+1G
(
Aθ̃n + ∆n+1

)
, A =

d

dθ
f̄ (θ∗)

11 / 26

Zap Stochastic Approximation

Optimal Asymptotic Covariance
Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d× d matrix gain sequence {Gn}:

θn+1 = θn + αn+1Gn+1f(θn,Wn+1)

Assume it converges, and linearize:

θ̃n+1 ≈ θ̃n + αn+1G
(
Aθ̃n + ∆n+1

)
, A =

d

dθ
f̄ (θ∗)

Asymptotic Variance Theory

If Reλ(GA) ≥ −1
2 for some eigenvalue then ΣG is (typically) infinite

If Reλ(GA) < −1
2 for all, ΣG solves the Lyapunov equation:

0 = (GA+ 1
2I)ΣG + ΣG(GA+ 1

2I)T +GΣ∆G
T

11 / 26

Zap Stochastic Approximation

Optimal Asymptotic Covariance
Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d× d matrix gain sequence {Gn}:

θn+1 = θn + αn+1Gn+1f(θn,Wn+1)

Assume it converges, and linearize:

θ̃n+1 ≈ θ̃n + αn+1G
(
Aθ̃n + ∆n+1

)
, A =

d

dθ
f̄ (θ∗)

Optimal Matrix Gain: G∗ :=−A−1

Resembles Newton-Raphson

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

0 = (GA+ 1
2I)ΣG + ΣG(GA+ 1

2I)T +GΣ∆G
T

11 / 26

Zap Stochastic Approximation

Optimal Variance and Stochastic Newton Raphson (SNR)
f̄(θ) = Aθ − b ∂

∂θ
(f̄(θ)) = A

Stochastic Newton Raphson: Matrix gain algorithm with
Gn ≈ G∗ = −A−1: A = − ∂

∂θ f̄(θ)

SNR Algorithm:

θn+1 = θn + αn+1Gnf(θn,Wn+1)

G−1
n = − 1

n+ 1

n+1∑
k=1

Ak An+1 =
d

dθ
f(θn,Wn+1)

12 / 26

Zap Stochastic Approximation

Optimal Variance and Stochastic Newton Raphson (SNR)
f̄(θ) = Aθ − b ∂

∂θ
(f̄(θ)) = A

Stochastic Newton Raphson: Matrix gain algorithm with
Gn ≈ G∗ = −A−1: A = − ∂

∂θ f̄(θ)

SNR Algorithm:

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Wn+1)

Ân+1 = Ân + αn+1(An+1 − Ân)

12 / 26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR
A(θ) = ∂

∂θ
f̄(θ) is a function of θ

Zap-SNR (designed to emulate deterministic Newton-Raphson)

Requires Ân+1 ≈ A(θn) :=
d

dθ
f̄ (θn)

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Wn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 =
d

dθ
f(θn,Wn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

13 / 26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR
A(θ) = ∂

∂θ
f̄(θ) is a function of θ

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Wn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 =
d

dθ
f(θn,Wn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

13 / 26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR
A(θ) = ∂

∂θ
f̄(θ) is a function of θ

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Wn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 =
d

dθ
f(θn,Wn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

13 / 26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR
A(θ) = ∂

∂θ
f̄(θ) is a function of θ

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Wn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 =
d

dθ
f(θn,Wn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

13 / 26

Zap Stochastic Approximation

Optimal Variance and Zap-SNR
A(θ) = ∂

∂θ
f̄(θ) is a function of θ

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Wn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 =
d

dθ
f(θn,Wn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

13 / 26

Application to Q-Learning

Application to Q-Learning

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain, with input U .

For all states x and sets A,

P{Xn+1 ∈ A | Xn = x, Un = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor

Q-function:

Q∗(x, u) = min
U

∞∑
n=0

βnE[c(Xn, Un) | X0 = x, U0 = u]

Bellman equation:

Q∗(x, u) = c(x, u) + βE
[

min
u′

Q∗(Xn+1, u
′) | Xn = x, Un = u

]

14 / 26

Application to Q-Learning

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain, with input U .

For all states x and sets A,

P{Xn+1 ∈ A | Xn = x, Un = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor

Q-function:

Q∗(x, u) = min
U

∞∑
n=0

βnE[c(Xn, Un) | X0 = x, U0 = u]

Bellman equation:

Q∗(x, u) = c(x, u) + βE
[

min
u′

Q∗(Xn+1, u
′) | Xn = x, Un = u

]

14 / 26

Application to Q-Learning

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain, with input U .

For all states x and sets A,

P{Xn+1 ∈ A | Xn = x, Un = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor

Q-function:

Q∗(x, u) = min
U

∞∑
n=0

βnE[c(Xn, Un) | X0 = x, U0 = u]

Bellman equation:

Q∗(x, u) = c(x, u) + βE
[

min
u′

Q∗(Xn+1, u
′) | Xn = x, Un = u

]
14 / 26

Application to Q-Learning

Stochastic Optimal Control Seen As an SA Problem

Problem

Find function Q∗ that solves

E
[
c(Xn, Un) + βQ∗(Xn+1)−Q∗(Xn, Un)

]
= 0

Q-learning

Given {Qθ : θ ∈ Rd}, find θ∗ that solves

E
[(
c(Xn, Un) + βQθ

∗
((Xn+1)−Qθ∗((Xn, Un)

)
ζn
]

= 0

The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design.

15 / 26

Application to Q-Learning

Stochastic Optimal Control Seen As an SA Problem

Problem

Find function Q∗ that solves

E
[
c(Xn, Un) + βQ∗(Xn+1)−Q∗(Xn, Un)

]
= 0

Q-learning

Given {Qθ : θ ∈ Rd}, find θ∗ that solves

E
[(
c(Xn, Un) + βQθ

∗
((Xn+1)−Qθ∗((Xn, Un)

)
ζn
]

= 0

The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design.

15 / 26

Application to Q-Learning

Stochastic Optimal Control Seen As an SA Problem

Problem

Find function Q∗ that solves

E
[
c(Xn, Un) + βQ∗(Xn+1)−Q∗(Xn, Un)

]
= 0

Q-learning

Given {Qθ : θ ∈ Rd}, find θ∗ that solves

E
[(
c(Xn, Un) + βQθ

∗
((Xn+1)−Qθ∗((Xn, Un)

)
ζn
]

= 0

The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design.

Example: ζn = ∇θQθ(Xn, Un)

15 / 26

Application to Q-Learning

Stochastic Optimal Control Seen As an SA Problem

This is Stochastic Approximation!

Q-learning

Given {Qθ : θ ∈ Rd}, find θ∗ that solves

E
[(
c(Xn, Un) + βQθ

∗
((Xn+1)−Qθ∗((Xn, Un)

)
ζn
]

= 0

The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design.

Example: ζn = ∇θQθ(Xn, Un)

15 / 26

Application to Q-Learning

Watkins’ Q-learning (= “Vanilla” Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E
[(
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn := ψ(Xn, Un)

ψi(x, u) := I{x = xi, u = ui} (complete basis)

16 / 26

Application to Q-Learning

Watkins’ Q-learning (= “Vanilla” Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E
[(
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn := ψ(Xn, Un)

ψi(x, u) := I{x = xi, u = ui} (complete basis)

16 / 26

Application to Q-Learning

Watkins’ Q-learning (= “Vanilla” Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E
[(
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn := ψ(Xn, Un)

ψi(x, u) := I{x = xi, u = ui} (complete basis)

Algorithm:

θn+1 = θn + αn+1

(
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

)
ζn

16 / 26

Application to Q-Learning

Watkins’ Q-learning (= “Vanilla” Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E
[(
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn := ψ(Xn, Un)

ψi(x, u) := I{x = xi, u = ui} (complete basis)

Converges, but has infinite asymptotic variance if β > 1
2 :

λmax

(
A(θ∗)

)
> −1

2

[Devraj & Meyn, 2017]

16 / 26

Application to Q-Learning

Watkins’ Q-learning (= “Vanilla” Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E
[(
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn := ψ(Xn, Un)

ψi(x, u) := I{x = xi, u = ui} (complete basis)

Convergence rate for β > 1
2 :

O(1/n1−β)

[Devraj & Meyn, 2017]

16 / 26

Application to Q-Learning

Watkins’ Q-learning (= “Vanilla” Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E
[(
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn := ψ(Xn, Un)

ψi(x, u) := I{x = xi, u = ui} (complete basis)

Convergence rate for β > 1
2 :

O(1/n1−β)

[Devraj & Meyn, 2017]

16 / 26

Application to Q-Learning

Linear Parametrization of Q-Learning

Definition

Qθ(x, u) = θTψ(x, u), where:

θ ∈ Rd denotes the parameter vector,

ψ(x, u) represents the features of (x, u).

Particular Case: Tabular Q-Learning

ψi(x, u) = I(x = xi, u = ui),

(xi, ui) enumerate all state-action pairs,

1 ≤ i ≤ d, where d = |states| ∗ |actions|.

17 / 26

Application to Q-Learning

Linear Parametrization of Q-Learning

Definition

Qθ(x, u) = θTψ(x, u), where:

θ ∈ Rd denotes the parameter vector,

ψ(x, u) represents the features of (x, u).

Particular Case: Tabular Q-Learning

ψi(x, u) = I(x = xi, u = ui),

(xi, ui) enumerate all state-action pairs,

1 ≤ i ≤ d, where d = |states| ∗ |actions|.

17 / 26

Application to Q-Learning

Q(λ) Algorithm

1 dn+1 = c(Xn, Un) + βQθn(Xn+1)−Qθn(Xn, Un)

2 θn+1 = θn + αn+1ζndn+1

3 ζn+1 = λβζn + ψ(Xn+1, Un+1)

18 / 26

Application to Q-Learning

Zap-Q(λ) Algorithm

1 dn+1 = c(Xn, Un) + βQθn(Xn+1)−Qθn(Xn, Un)

2 An+1 = ζn[βψ(Xn+1, φn(Xn+1))− ψ(Xn, Un)]T

3 Ân+1 = Ân + γn+1[An+1 − Ân]

4 θn+1 = θn + αn+1Â
−1
n+1ζndn+1

5 ζn+1 = λβζn + ψ(Xn+1, Un+1)

19 / 26

Application to Q-Learning

Zap-Q(λ) Algorithm: Issues and Possible Solutions
Work in Progress...

Issue 1: Ân+1 is proven to be eventually invertible, but is generally not
invertible during the early stages of the algorithm.

⇒ Use Moore-Penrose pseudoinverse Â+
n+1.

Issue 2: Computing Â−1
n+1 (or Â+

n+1) is expensive.

⇒ In fact we do not need Â+
n+1 itself but only Â+

n+1ζn. This
can be done by solving a least squares problem: find X that
minimizes ‖Ân+1X − ζn‖2. Still expensive...

⇒ Since Ân+1 is updated by adding a matrix of rank 1 at each
step, it can be computed cheaply by
Sherman-Morrison-Woodbury formula.

20 / 26

Application to Q-Learning

Zap-Q(λ) Algorithm: Issues and Possible Solutions
Work in Progress...

Issue 1: Ân+1 is proven to be eventually invertible, but is generally not
invertible during the early stages of the algorithm.

⇒ Use Moore-Penrose pseudoinverse Â+
n+1.

Issue 2: Computing Â−1
n+1 (or Â+

n+1) is expensive.

⇒ In fact we do not need Â+
n+1 itself but only Â+

n+1ζn. This
can be done by solving a least squares problem: find X that
minimizes ‖Ân+1X − ζn‖2. Still expensive...

⇒ Since Ân+1 is updated by adding a matrix of rank 1 at each
step, it can be computed cheaply by
Sherman-Morrison-Woodbury formula.

20 / 26

Conclusion

Conclusion

Conclusion

Take-aways:

Reinforcement Learning is not just cursed by dimension,
but also by variance!

RL algorithms in their raw form are NO GOOD without careful gain
selection.

Current/future works:

Implementation in the Stable-Baselines framework.

Q-learning with function-approximation: obtain conditions for a stable
algorithm in a general setting.

21 / 26

Conclusion

Conclusion

Take-aways:

Reinforcement Learning is not just cursed by dimension,
but also by variance!

RL algorithms in their raw form are NO GOOD without careful gain
selection.

Current/future works:

Implementation in the Stable-Baselines framework.

Q-learning with function-approximation: obtain conditions for a stable
algorithm in a general setting.

21 / 26

References

This Presentation

A. M. Devraj and S. P. Meyn, Zap Q-learning. Advances in Neural
Information Processing Systems (NIPS). Dec. 2017.

A. M. Devraj and S. P. Meyn, Fastest convergence for Q-learning. Available
on ArXiv. Jul. 2017.

A. M. Devraj, A. Bušić, and S. Meyn. Optimal Matrix Momentum
Stochastic Approximation and Applications to Q-learning. ArXiv e-prints,
Feb. 2019.

S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Zap Q-learning for Optimal
Stopping Time Problems. ArXiv e-prints, Apr. 2019.

S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Zap Q-learning with
Nonlinear Function Approximation. ArXiv e-prints, Oct. 2019.

22 / 26

References

Selected References I

[1] A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv , July 2017
(extended version of NIPS 2017).

[2] A. M. Devraj, A. Bušić and S. P. Meyn. Zap Meets Momentum: Stochastic
Approximation Algorithms with Optimal Convergence Rate. ArXiv , September 2018.

[3] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations, volume 22 of Applications of Mathematics (New York). Springer-Verlag,
Berlin, 1990. Translated from the French by Stephen S. Wilson.

[4] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press (jointly), Delhi, India and Cambridge, UK,
2008.

[5] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447–469, 2000.

[6] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Published in the Cambridge
Mathematical Library.

[7] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
See last chapter on simulation and average-cost TD learning

23 / 26

https://arxiv.org/abs/1707.03770
https://arxiv.org/abs/1809.06277
https://arxiv.org/abs/1809.06277

References

Selected References II

[8] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236–245, 1985.

[9] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

[10] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika (in Russian). translated in Automat. Remote Control, 51 (1991), pages
98–107, 1990.

[11] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838–855, 1992.

[12] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[13] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, 1983.

[14] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796–819, 2004.

24 / 26

References

Selected References III

[15] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, pages 451–459. Curran Associates, Inc., 2011.

[16] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[17] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[18] R. S. Sutton.Learning to predict by the methods of temporal differences. Mach. Learn.,
3(1):9–44, 1988.

[19] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674–690, 1997.

[20] C. Szepesvári. The asymptotic convergence-rate of Q-learning. In Proceedings of the 10th
Internat. Conf. on Neural Info. Proc. Systems, pages 1064–1070. MIT Press, 1997.

[21] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In
Advances in Neural Information Processing Systems, 2011.

[22] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1–25, 2003.

25 / 26

References

Selected References IV

[23] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for
neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control. Wiley, 2011.

[24] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives. IEEE Trans. Automat. Control, 44(10):1840–1851, 1999.

[25] D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning. Discrete Event Dynamic Systems: Theory and
Applications, 16(2):207–239, 2006.

[26] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Mach. Learn., 22(1-3):33–57, 1996.

[27] J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn.,
49(2-3):233–246, 2002.

[28] A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dyn. Systems: Theory and Appl., 13(1-2):79–110, 2003.

[29] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. In IEEE
Conference on Decision and Control, pages 3598–3605, Dec. 2009.

26 / 26

	Motivation: Stochastic Approximation and RL
	Zap Stochastic Approximation
	Application to Q-Learning
	Conclusion
	References

