Zap Stochastic Approximation and
Reinforcement Learning

Reading Group Network Theory
Lincs

Frangois Durand (NBLF)
Based on works by Ana Bugi¢ (Inria / ENS),
Adithya M. Devraj and Sean Meyn (University of Florida)

October 6, 2020



Zap Stochastic Approximation and RL

Outline

@ Motivation: Stochastic Approximation and RL
9 Zap Stochastic Approximation
e Application to Q-Learning

@ Conclusion



Motivation:
Stochastic Approximation and RL



Motivation: Stochastic Approximation and RL

What is Stochastic Approximation?
Problem

e W random variable, 6 € R< variable.
e f(O,W) ¢ R4,

o f(6):=E[f(6,W)].
Goal: find 6* s.t.
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Motivation: Stochastic Approximation and RL

What is Stochastic Approximation?

Problem
o W random variable, § € R? variable.
o f(6,W)c R4
o f(0) :=E[f(0,W)].
Goal: find 0* s.t.
f(6*) =0.

Traditional example (with d = 1)
@ 0: dosage of a medicine (e.g. insulin).
o f(0,W): effect (e.g. blood sugar level — ideal blood sugar level).
o 0*: ideal dosage s.t. f(0*) = 0.
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Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm

Principle

Initial estimate: 0y (arbitrary).
Update rule:

en—i—l =0, + an—i—lf(ena Wn—i—l),

where the step-size a4 is part of the algorithm design.
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Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm

Principle

Initial estimate: 6y (arbitrary).
Update rule:
gn—i—l =0 + an—i—lf(ena Wn+1)7

where the step-size a4 is part of the algorithm design.

Traditional example (continued)
@ Try dosage 0y with patient 1.
o This gives effect f(6p, W1): a noisy version of f(6p).
o New estimated dosage 61 = 0y + aa f (6o, W1).
o Etc.
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Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm: Illustration
9n+1 = 071, aF an+lf(0na Wn+l)

4 f(0) F(60, W)
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Motivation: Stochastic Approximation and RL

Robbins-Monro Algorithm: Convergence
0n+1 = en aF an+lf(0na Wn+l)

The step-size satisfies:

° Zan:oo,
° Za%<oo.

Usually we take a,, = 1/n.
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Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach
Problem

We want to estimate E[W], where W is a random variable.
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Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach

Problem

We want to estimate E[W], where W is a random variable.

Conversion to SA problem

Let (6, W) =W — 0. Then F(6) = E[W] — 6.
We want to find 6* s.t. f(6*) = 0.
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Motivation: Stochastic Approximation and RL

Monte-Carlo Estimation, Seen as an SA Approach

Problem

We want to estimate E[W], where W is a random variable.

Conversion to SA problem

Let (6, W) =W — 0. Then F(6) = E[W] — 6.
We want to find 6* s.t. f(6*) = 0.

Application of Robbins-Monro Algorithm

1
Ont1 =9n+n—+1(Wn+1 —0p)
n 1
= 0 W,
nl n+n+1 n+1

1 n+1

— > Wi = This is Monte-Carlo!
n+1 Pt
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Motivation: Stochastic Approximation and RL

Many RL challenges are SA Problems Too

In Monte-Carlo, we want to solve E[IW — 6] = 0.
e W is new data / sample,
@ 6, is an old estimation,

@ On41 is the new estimation: 0,11 = 0, + ay1 * observed difference.
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Motivation: Stochastic Approximation and RL

Many RL challenges are SA Problems Too

In Monte-Carlo, we want to solve E[IW — 6] = 0.
e W is new data / sample,

@ 0, is an old estimation,

@ On41 is the new estimation: 0,11 = 0, + ay1 * observed difference.

Many RL algorithms rely on a temporal difference (TD) term of the same
form. For example, for Q-Learning:

o New data / sample = ¢(X,,, U,) + S min, [Q" (Xp+1, uw)],
@ Old estimation = Q" (X, U,).
e New estimation = Q"1(X,,,U,,).

We will develop more on this in the section about Q-Learning.
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Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution 0* to

f(0):=E[f(0,W)] =0, 6OecR! f:RI - RY
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Difficulties of Stochastic Approximation

Reminder: we search the solution 0* to

f(0):=E[f(0,W)] =0, 6OecR! f:RI - RY
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Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution 0* to

f(0):=E[f(0,W)] =0, 6OecR! f:RI - RY

What makes this hard?
@ The distribution of the random variable W may not be known.

@ Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different 6.
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Zap Stochastic Approximation

Difficulties of Stochastic Approximation

Reminder: we search the solution 0* to

f(0):=E[f(0,W)] =0, 6OecR! f:RI - RY

What makes this hard?
@ The distribution of the random variable W may not be known.

@ Computation of the expectation may be expensive: root finding
requires multiple evaluations of the expectation for different 6.

© The recursive algorithms we come up with are often slow, and their
variance may be infinite. We will see that it is typically the case for
Q-Learning, unfortunately.
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Zap Stochastic Approximation

Convergence
F0) = E[f(6", W) =0

Robbins-Monro Algorithm (reminder): 0,11 = 6, + apnt1.f(0n, Wit1).
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Zap Stochastic Approximation

Convergence
F0) = E[f(6", W) =0

Robbins-Monro Algorithm (reminder): 0,11 = 6, + apnt1.f(0n, Wit1).

Fla(t)

d
Analysis: 0* : stationary point of the ODE %az(t)

SA is a noisy Euler approximation:

0n+1 = 9n + an+1[f(0n) + An+1]
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Zap Stochastic Approximation

Convergence
F0) = E[f(6", W) =0

Robbins-Monro Algorithm (reminder): 0,11 = 6, + apnt1.f(0n, Wit1).

Fla(t)

d
Analysis: 0* : stationary point of the ODE %az(t)

SA is a noisy Euler approximation:

0n+1 = 9n + Oln+1[f(0n) + An+1]

Stability of the ODE — li_)m 0, = 0".
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Performance Criteria
SA recursion:

Oni1 = On + an1[f(0n) + Anyi]
Error sequence:
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Zap Stochastic Approximation

Performance Criteria
SA recursion:

0n+1 =0, + an+1[f(9n) + An—i—l]

Error sequence:

0y, =6, —0"

Two standard approaches to evaluate performance,
@ Finite-n bound:

POl > £} < 7
@ Asymptotic covariance (CLT):

n—00

%= lim nE[énﬂ . ab, ~ N(0,%)
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Zap Stochastic Approximation

Performance Criteria
SA recursion:

077,—1—1 =0, + an+1[f(9n) + An—i—l]

Error sequence:

0y, =6, —0"

Two standard approaches to evaluate performance,
@ Finite-n bound:

POl > £} < 7
@ Asymptotic covariance (CLT):

n—0o0

Y= lim nE[énﬂ . ab, ~ N(0,%)
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Asymptotic Covariance
Y = lim %, = lim nE[§,0;]
n— oo n—o00
SA recursion:

Ont1 = 0p + an+1[f(9n) =+ An+1]

Dae
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Asymptotic Covariance
Y = lim %, = lim nE[§,0;]
n— oo n—o00

Linearized SA recursion for the error sequence {6, }:

Ont1 ~ On + %{Aén + An+1}

Dae
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Asymptotic Covariance
¥ = lim ¥, = lim nE[6,0;]
n— oo n—o00

Scaled, linearized SA recursion for the error sequence:

Vn+ 10,41 ~ /nby, + %{(A +10)v/nb,

1
}‘f’%An—l—l
A=4Lf(6)
n—i—l%\/ﬁﬁ-#ﬁ

Dae
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Asymptotic Covariance
Y = lim %, = lim nE[§,0;]
n— oo n—o00
SA recursion for {¥,,}:

Em4%En+%“A+%DZn+EﬁA+%DT+2A}

A=2LF(0%)
YA = E[AnHA;H]
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Zap Stochastic Approximation

Asymptotic Covariance
¥ = lim ¥, = lim nE[6,0;]

n—o0 n—o0

SA recursion for {¥,,}:

Tnt1 & Tn + H{(A+ 1D)T0 + a4+ 407+ 34
A= LT (0%)
YA = E[An114] 4]

Asymptotic Variance Theory
Q IfRe)(4) > —% for some eigenvalue then 33 is (typically) infinite
@ Ifall ReA(4) < —3, ¥ = lim ¥, solves the Lyapunov equation:

n—oo

0=(A+ DT+ S(A+ L)+ 2
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Zap Stochastic Approximation

Optimal Asymptotic Covariance

Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d x d matrix gain sequence {G,, }:

9n+1 = en + an+1G7L+1f(‘9na Wn—l—l)
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Zap Stochastic Approximation

Optimal Asymptotic Covariance

Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d x d matrix gain sequence {G,, }:

9n+1 = en + an+1G7L+1f(9na Wn—l—l)

Assume it converges, and linearize:

én+1 ~ én + an—l—lG(Aén + An—i—l)a A= — 7(9*)
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Zap Stochastic Approximation

Optimal Asymptotic Covariance

Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d x d matrix gain sequence {G,, }:
9n+1 =0, + an+1G7L+1f(‘9na Wn—l—l)

Assume it converges, and linearize:

én—f—l ~ 0, + an-{—lG(Aén + An+1), A= —f(0")

Asymptotic Variance Theory
o If ReA(GA) > —% for some eigenvalue then X is (typically) infinite
o If ReA(GA) < —% for all, ©“ solves the Lyapunov equation:

0= (GA+31)SC +X9(GA+ LT+ GEAGT
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Zap Stochastic Approximation

Optimal Asymptotic Covariance

Basis of Ruppert’s Stochastic Newton Raphson, and Polyak-Ruppert Averaging

Introduce a d x d matrix gain sequence {G,, }:
9n+1 =0, + an+1G7L+1f(‘9na Wn—l—l)

Assume it converges, and linearize:

én—f—l ~ 0, + an-{—lG(Aén + An+1), A= —f(0")

Optimal Matrix Gain: G* := —A~!
@ Resembles Newton-Raphson
o ltisoptimal: Y*=G*SAG*T <X  any other G

0= (GA+ 312 +X9(GA+ L))"+ GSAGT
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Zap Stochastic Approximation

Optimal Variance and Stochastic Newton Raphson (SNR)
fO)=40-b 5(f(6) =4

Stochastic Newton Raphson: Matrix gain algorithm with
G, ~G*=—-A"1
SNR Algorithm:

9n+1 = en + an—i—lan(‘gn, Wn—i—l)
n+1
1 d
Z Ak An+1 = _f(en’ Wn—l—l)
k=1

Gl=-

n+1 do
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Zap Stochastic Approximation

Optimal Variance and Stochastic Newton Raphson (SNR)
fO)=40-b 5(f(6) =4

Stochastic Newton Raphson: Matrix gain algorithm with
G, ~G*=—-A"1
SNR Algorithm:

0n+1 = gn + an-{—l(_An—i-l)ilf(ena Wn+1)
A\n—&—l - A\n + an+1(An+1 - A\n)
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Zap Stochastic Approximation

Optimal Variance and Zap-SNR

A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)

N d -
Requires A, ~ A(6,) = T (6,)
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Zap Stochastic Approximation

Optimal Variance and Zap-SNR
A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)
0n+1 = ‘9n + an+1(_fz{n+1)_1f(9na WnJrl)

~ ~ ~ d
An+1 = An + ’7n+1(An+1 - An)a An+1 =

@f(eﬂn Wn+1)
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Zap Stochastic Approximation

Optimal Variance and Zap-SNR

A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)
0n+1 = an + an+1(_1/4\n+1)_1f(9n5 WnJrl)
d

A\n+1 = A\n + ’7n+1(An+1 - A\n)a An+1 = @f(eny Wn+1)

Enﬂ ~ A(0,) requires high-gain, o, 0, n — 00
n
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Optimal Variance and Zap-SNR

A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)
9n+1 = an + anJrl(*A\nJrl)_lf(ena WnJrl)
d

A\n+1 = A\n + '7n+1(An+1 - A\n)a An+1 = @f(ena Wn+1)

Enﬂ ~ A(0,) requires high-gain, o, 0, n — 00
n

Always: ay, = 1/n. Numerics that follow: 7, = (1/n)”, p € (0.5,1)
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Zap Stochastic Approximation

Optimal Variance and Zap-SNR

A(0) = Z f(0) is a function of 6

Zap-SNR (designed to emulate deterministic Newton-Raphson)
0n+1 = ‘9n + an+1(_fz{n+1)_1f(9na WnJrl)

—~ —~ ~ d
An+1 = An + ’7n+1(An+1 - An)a An+1 = @f(eny Wn+1)
ﬁnﬂ ~ A(0,) requires high-gain, o, 0, n — 00
ODE for Zap-SNR
d 1= d -
Ca=—[A@)) @), A= (@)
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Application to Q-Learning



Stochastic Optimal Control

MDP Model
X is a stationary controlled Markov chain, with input U.
o For all states = and sets A4,
P{Xn+1 € A| X,, =z, U, = u,and prior history} = P,(z, A)
@ ¢: Xx U—=Ris a cost function

@ (8 < 1 a discount factor
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X is a stationary controlled Markov chain, with input U.
o For all states = and sets A4,
P{Xn+1 € A| X,, =z, U, = u,and prior history} = P,(z, A)
@ ¢: Xx U—=Ris a cost function

@ (8 < 1 a discount factor

Q-function:
mmZﬁ”E (X, Uyn) | Xo = 2, Uy = 1
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Stochastic Optimal Control

MDP Model
X is a stationary controlled Markov chain, with input U.
o For all states = and sets A4,
P{Xn+1 € A| X,, =z, U, = u,and prior history} = P,(z, A)
@ ¢: Xx U—=Ris a cost function

@ (8 < 1 a discount factor

Q-function:
mmZﬂ”E (X, Uyn) | Xo = 2, Uy = 1

Bellman equation:
Q*(z,u) = c(z,u) + BE[miln Q" (Xn41,v) | Xn =, Up = u]
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Stochastic Optimal Control Seen As an SA Problem
Problem

Find function Q* that solves

E[e(Xn, Un) + BQ* (Xnt1) — Q* (X, Un)] = 0

D¢
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Stochastic Optimal Control Seen As an SA Problem

Problem
Find function @Q* that solves

E[e(Xn, Un) + BQ* (Xnt1) — Q* (X, Un)] = 0

Q-learning
Given {Q? : 6 € R}, find 6* that solves

E[(C(Xna Un) + /BQQ*((XTH-I) - Qg*((Xn-/ U’n))Cn] = O

The family {Q%} and “eligibility vectors’ {(,}, ¢, € R? are part of
algorithm design.
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Stochastic Optimal Control Seen As an SA Problem

Problem
Find function @Q* that solves

E[e(Xn, Un) + BQ* (Xnt1) — Q* (X, Un)] = 0

Q-learning
Given {Q? : 6 € R}, find 6* that solves

E[(C(Xna Un) + /BQQ*((XTH-I) - Qg*((Xn-/ Un))Cn] = O

The family {Q%} and “eligibility vectors’ {(,}, ¢, € R? are part of

algorithm design.
Example: ¢, = VoQ'(X,,, Uy)

v

15/26



Stochastic Optimal Control Seen As an SA Problem

This is Stochastic Approximation!

Q-learning
Given {Q? : 6 € R}, find 0* that solves

E[(c(Xn,Un) + BQ" (Xns+1) — Q7 (X0, Un)) ] =0

The family {Q%} and “eligibility vectors’ {(,}, ¢, € R are part of
algorithm design.
Example: ¢, = VoQ%(X,.,U,)

v
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Application to Q-Learning

Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

E[(C(Xnv Un) + BQG* (Xn—l—l) - Qe* (Xna Un))Cn] =0



Watkins' @-learning (= “Vanilla” Tabular Q-Learning)

E[(C(Xﬂv Uﬂ) + BQG* (Xn-‘rl) - Qe* (XTL7 Un))Cn] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)
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Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

E[(C(XTH Un) + 5Q9* (Xn-‘rl) - Qe* (Xm Un))(n] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

Algorithm:
en—l—l = gn + appi (C(Xna Un) + 5Q9* (XnJrl) - Qe* (Xna Un))Cn
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Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

E[(C(XTH Un) + 5Q9* (Xn-‘rl) - Qe* (Xny Un))(n] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

Converges, but has infinite asymptotic variance if 5 > %:
Amax (A(0%)) > —3

[Devraj & Meyn, 2017]
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Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

E[(C(XTH Un) + 5Q9* (Xn-‘rl) - Qe* (Xny Un))(n] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

Convergence rate for 5 > %:
O(1/n' ")

[Devraj & Meyn, 2017]
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Watkins' @-learning (= “Vanilla" Tabular Q-Learning)

Big Question: Can we Zap Q-Learning?

E[(c(Xn, Un) +6Q" (Xns1) = Q@ (X, Un))Gu] =0

Watkin's algorithm is Stochastic Approximation

The family {Q%} and eligibility vectors {¢,,} in this design:
o Linearly parameterized family of functions: Q%(x,u) = 67y(z,u)
® (n=19(Xn,Up)
o Yi(x,u):=l{x=2"u=1u"} (complete basis)

Convergence rate for 5 > %:
O(1/n' ")

[Devraj & Meyn, 2017]
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Application to Q-Learning

Linear Parametrization of Q-Learning

Definition
Q%(z,u) = 0T+ (x,u), where:
e 0 € R? denotes the parameter vector,

@ (x,u) represents the features of (x,u).
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Application to Q-Learning

Linear Parametrization of Q-Learning

Definition
Q%(z,u) = 0T+ (x,u), where:
e 0 € R? denotes the parameter vector,

@ (x,u) represents the features of (x,u).

Particular Case: Tabular Q-Learning
o Yi(z,u) =I(z = 2%, u = u'),
o (2%, u’) enumerate all state-action pairs,

e 1 < <d, where d = |states| * |actions|.

17/26



Q(A) Algorithm

(1) dn+1 = C(Xng Un) + ﬁggn (XnJrl) - Qen (Xna Un)
Q 01 =0+ any1Gudngr
o Cn-i—l - )\/BCn + 1/}( n+1, n+1)
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Zap-Q(A) Algorithm

Q dpt1 =c(Xn,Up) + 5Q0n (Xn41) — Q™ (X0, Uy)
Q Ay = Qn[ﬁl/’(Xn-ﬁ-la ?bn(Xn-i-l)) - w(Xna Un)]T
© Api1 = Ay +ynr1[Ang1 — 4y

Q 0hp1=0, +an+lA\7:_il_1Cn n+1

Q GCut1 = ABGn + ¥V(Xn+1, Unt1)

19/26



Zap-Q(A) Algorithm: Issues and Possible Solutions

Work in Progress...

Issue 1: A\n+1 is proven to be eventually invertible, but is generally not
invertible during the early stages of the algorithm.

= Use Moore-Penrose pseudoinverse A;{H.
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Zap-Q(A) Algorithm: Issues and Possible Solutions

Work in Progress...

Issue 1: A\n+1 is proven to be eventually invertible, but is generally not
invertible during the early stages of the algorithm.

= Use Moore-Penrose pseudoinverse A:H.

Issue 2: Computing f/l\;}rl (or ETJLFH) is expensive.
= In fact we do not need A, | itself but only A}, ¢,. This
can be done by solving a least squares problem: find X that
minimizes ||Ap+1X — ull2. Still expensive...
= Since A\n+1 is updated by adding a matrix of rank 1 at each

step, it can be computed cheaply by
Sherman-Morrison-Woodbury formula.
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Conclusion

Conclusion

Take-aways:

@ Reinforcement Learning is not just cursed by dimension,
but also by variance!

@ RL algorithms in their raw form are NO GOOD without careful gain
selection.
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Conclusion

Conclusion

Take-aways:

@ Reinforcement Learning is not just cursed by dimension,
but also by variance!

@ RL algorithms in their raw form are NO GOOD without careful gain
selection.

Current/future works:
@ Implementation in the Stable-Baselines framework.

@ Q-learning with function-approximation: obtain conditions for a stable
algorithm in a general setting.
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This Presentation

@ A. M. Devraj and S. P. Meyn, Zap Q-learning. Advances in Neural
Information Processing Systems (NIPS). Dec. 2017.

@ A. M. Devraj and S. P. Meyn, Fastest convergence for Q-learning. Available
on ArXiv. Jul. 2017.

@ A. M. Devraj, A. Busi¢, and S. Meyn. Optimal Matrix Momentum

Stochastic Approximation and Applications to Q-learning. ArXiv e-prints,
Feb. 2019.

S. Chen, A. M. Devraj, A. Bugi¢, and S. Meyn. Zap Q-learning for Optimal
Stopping Time Problems. ArXiv e-prints, Apr. 2019.

@ S. Chen, A. M. Devraj, A. Bugi¢, and S. Meyn. Zap Q-learning with
Nonlinear Function Approximation. ArXiv e-prints, Oct. 2019.
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