NOKIA Bell Labs

IoT Network Control and Management

LINCS seminar

- Ludovic Noirie with many colleagues from Nokia Bell Labs (IoT-Control department), Nesrine Ammar (ex-PhD student) and Sébastien Tixeuil (Sorbonne Université)
- 03/06/2020

1 © 2019 Nokia

1

Outline

1. Context of IoT private Network

Public

- 2. SDN/cloud-based platform for IoT private networks: Future Spaces
- 3. IoT service recommendation
- 4. IoT-device-type identification
- 5. Need for IoT network monitoring

Public

6. Conclusion

Outline

- 1. Context of IoT private Network
- 2. SDN/cloud-based platform for IoT private networks: Future Spaces
- 3. IoT service recommendation
- 4. IoT-device-type identification
- 5. Need for IoT network monitoring
- 6. Conclusion

3	© 2019 Nokia	Public	NOKIA Bell Labs
3			

What is the I	nternet of Things (IoT)?	
		In red : what we consider in this presentati
loT = <u>Internet</u> c	f <u>Things</u>	
• "Things" = any	thing = any connected end-device in the n	etwork
– Things = devi	ces interacting with the environment and/or huma	ans, usually with limited capacities
– But "before-	oT-era" machines (such as PCs, laptops, smartpho	ones) are also part of the IoT!
	ents (NEs, such as Ethernet switches, routers, acc 'end-devices"	ess points,) may not be considered as "things" as
User's acces	s to NEs is mainly/only for their configuration	
• "Internet" = in	terconnection of networks (IoT: with their	r devices!)
– Many commu	nication/network technologies for IoT: IP/Eth/Wi-	Fi, Bluetooth, ZigBee, Z-Wave, LoRA, NB-IoT,
– IP (v4 & v6) is	the network protocol for the Internet, SDN/NFV	may be used for network control and management
• L1 to L7 layers	are concerned by IoT	
– (Multi-)Point-	to-(Multi-)Point communication protocols betwee	n devices (L1-L2)
 Network prot 	ocol (L3, mainly IP) with network control (e.g., SDN	N) and network management (e.g., NFV)
- IoT Services	Applications (L7+): Apps on devices, on smartpho	nes connected to IoT devices, in the Cloud
4 © 2019 Nokia	Public	NOKIA Bell Lab

Context of IoT private Network Control and management of IoT networks and their devices	
 Network Flexible/programmable control Autonomous management Taking into account the devices: fine grain control & management 	
 Devices Management of the devices in the network Privacy / security aspects Monitoring 	
7 © 2019 Nokia Public	NOKIA Bell Labs

Г

Virtualization

- *SDN definition:* abstraction of hardware resources / network elements (for HW control by SW ⇒ programmable networks).
- *Computing/NFV definition:* separation of functionality from infrastructure (function implementation in commodity HW).
 - Note: these virtualized functions are naturally abstracted and controllable in a SDN way... But the reverse may not be true, e.g., optical elements, HW routers (SW routers can be virtualized in a NFV way)...

Programmability

- Make some elements/functions SW-controllable by the "user"
 - According to the context, "user" = infrastructure operator, network operator, potentially end-users in some context...

Softwarization

- · Software-based control and management of elements/functions
- 9 © 2019 Nokia Public

We tested the following IRandom Forest				
Decision Tree	Algorithm	Accuracy	Recall	Precisio
 K-nearest Neighbors 	Random Forest	0.95	0.96	0.96
0	Decision Tree	0.98	0.97	0.97
Support vector ridenine	K-nearest Neighbors	0.97	0.97	0.95
Naïve Bayes	Support Vector Machine	0.89	0.92	0.94
Best = Decision Tree	Naive Bayes	0.96	0.99	0.95
• Best on Precision and Acc	curacy			
• Possibility to "understand	d" what Decision Tree is doing by inspectio	n (interpretab	ility)	

Т

Some use-cases		
 IoT device manage 	ment: "fingerprinting" of IoT devices	
 Identification of Id 	T device types using ML techniques on traffic	generated by IoT devices
 IoT device manage 	ment : anomaly detection	
 Detection of devia 	nt traffic patterns, for faulty or malicious beha	avior detection
 IoT application & s 	ervice management: network-protocol-l	based fingerprinting
 Correlation of training 	ic patterns between IoT devices to identify wh	nich services/applications are used
 IoT knowledge sha 	ing: multi-tenant aspects of distributed	traffic analysis
 Trade-off betwee 	data richness for better efficiency and privac	y/security constraints
Many other		
\Rightarrow Need for a gen	ric traffic monitoring architecture	e for IoT network infrastructures
37 © 2019 Nokia	Public	

Outline 1. Context of IoT private Network 2. SDN/cloud-based platform for IoT private networks: Future Spaces 3. IoT service recommendation 4. IoT-device-type identification 5. Need for IoT network monitoring 6. Conclusion

42 © 2019 Nokia

Public

NOKIA Bell Labs

Conclusion Control and management of IoT networks and their devices SDN/cloud-based platform for IoT networks: • Ease the usage of IoT devices by people: Majord'Home • Isolation of devices: SD-LANs (micro-slicing) ⇒ security/privacy • Collaborations of devices in multiple smart environments: Future spaces • Security application (not shown in this presentation): use of Future Spaces platform with blockchains for IoT device security [WINF2019] • Use of this platform to recommend IoT services to end-users A specific management function: IoT network monitoring • Required for security/privacy of IoT device usage • Leverage on SDN/NFV/cloud for flexibility/programmability • Example of IoT device type identification NOKIA Bell Labs 43 © 2019 Nokia Public

Conclu		
Some	references	
SDN/NFV-I	pased platform for IoT networks (Majord'Home / SD-LANs / Future Spaces)	
	M. Boussard et al., The Majord'Home: a SDN Approach to Let ISPs Manage and Extend Their Customers' Home Networks, CNSM/N https://dx.doi.org/10.1109/CNSM.2014.7014207	1anSDNNFV 2014,
[ITC2015]	M. Boussard et al., Software-Defined LANs for Interconnected Smart Environment, ITC 27 (2015), https://dx.doi.org/10.1109/ITU	2.2015.33
[Soft2016]	N. Le Sauze et al., <i>SDN in LANs: Programming the Network to Secure IoT Traffic</i> , Webminar IEEE Softwarization May 2016, https://sdn.ieee.org/newsletter/may-2016/sdn-in-lans-programming-the-network-to-secure-iot-traffic	
[Sens2018]	N. Le Sauze et al., Future Spaces: Reinventing the Home Network for Better Security and Automation in the IoT Era, Sensors 201	8, https://doi.org/10.3390/s18092986
[WINF2019]	M. Boussard et al., STewARD:SDN and blockchain-based Trust evaluation for Automated Risk management on IoT Devices, Works https://doi.org/10.1109/INFCOMW.2019.8845126	hops @ INFOCOM 2019,
IoT service	s management (IoT service recommendation & deployment)	
[loT2016]	M. Le Pallec et al., Physical-Interface-Based IoT Service Characterization, IoT 2016, https://dx.doi.org/10.1145/2991561.29915	<u>57</u>
[ICIN2017]	L. Noirie et al., Towards automated IoT service recommendation, demo ICIN 2017, https://dx.doi.org/10.1109/ICIN.2017.78993	<u>97</u>
[Algotel2017]	N. Ammar et al., Algorithme de Caractérisation des Services IoT: Évaluation des Performances, ALGOTEL 2017, https://hal.archive	es-ouvertes.fr/hal-01515597
[ICIN2018]	M. Le Pallec et al., Digital assistance for the automated discovery and deployment of IoT services, demo ICIN 2018, https://dx.do	i.org/10.1109/ICIN.2018.8401599
[ICSE2019]	A. Krishna et al., IoT Composer: Composition and Deployment of IoT Applications, demo ICSE 2019, https://dx.doi.org/10.1109/	CSE-Companion.2019.00028
[FMSE2019]	A. Krishna et al., Rigorous Design and Deployment of IoT Applications, FormaliSE 2019, https://dx.doi.org/10.1109/FormaliSE.20	<u>19.00011</u>
IoT device	management (Identification of IoT device types)	
[CORES2018]	N. Ammar et al., Identification du type des objets connectés par les informations des protocoles réseaux, CORES 2018, https://h	al.archives-ouvertes.fr/hal-01785952
[CORES2019]	N. Ammar et al., Amélioration de l'identification du type des objets connectés par classification supervisée, CORES 2019, https://	hal.archives-ouvertes.fr/hal-02126555
[FMEC2019]	N. Ammar et al., Network-Protocol-Based IoT Device Identification, FMEC/IoTNAT 2019, http://dx.doi.org/10.1109/FMEC.2019.8	795318
[TMA2019]	N. Ammar et al., Autonomous IoT Device Identification Prototype, best demo award TMA 2019, https://doi.org/10.23919/TMA.2	<u>019.8784517</u>
[ICC2020]	N. Ammar et al., Autonomous identification of IoT device types based on a supervised classification, ICC 2020, to be presented n	ext week
44 © 2019 N	okia Public	

