Polygraph

Accountable Byzantine Agreement

Table of Content

- Model
- Consensus Problem
- Gracefully Degrading Consensus
- Accountable Byzantine Consensus

Model

Communication Network

Communication Network

Partial Synchrony

Authentication

Integrity

Non-Repudiation

QA

omission

commission

Mutant messages

Conflicting Signed Message

The Adversary

- anticipate the intern state of every process
- all his connexion are infinitely rapid
- can manage like one person the actions of a malicious coalition of t processes
- can't forge the signature of a correct process
- **can't interfere** with the messages exchanges among honest users.

What is the Consensus Problem ?

Initial value

Solving the Consensus

Solving the Consensus

Validity

Agreement

→ no double-spending

Liveness

→ Some txs

are eventually committed

Valid():

- No double-spending
- Correct Signatures
- Everyone has the money to pay

1980, M. Pease, R. Shostak and L. Lamport

Reaching Agreement in the Presence of Faults

t < n/3

Gracefully Degrading Byzantine Consensus

Gracefully Degrading Byzantine Consensus

>= n/3 -> Safety (Liveness)

Impossibility of solving GDBC

Scenarios A and B

Polygraph

Accountable Byzantine Consensus

Accountable Byzantine Consensus

< n/3 -> Consensus (Safety + Liveness)

→ Disagreement → Detection →

On the validity

Weak Validity : If all processes are correct and if a correct process decides v, then v is the initial value of some process.

Strong Validity : If all correct processes have the same initial value v and a correct process decides, then it decides v

Here, We always authorize a valid Block proposed by a malicious node, but we still solve weak Validity to avoid trivial solution and follow the traditional litterature.

Solution

Binary Reduction

0	 	

	→ 1	

2
5

3		

0.		

	→1	

0,	→ 1	
T		

	→ 1	

~		
)*		
10		

\rightarrow 1	→ 1	\rightarrow 1

de constructions		→ 1	

-		
•		
0		

\rightarrow 1	→ 1	\rightarrow 1
	1	

A Contraction	→ 1	
	1	

)=		

\rightarrow 1	→ 1	$\rightarrow 0$	-	→ 1

$\rightarrow 0$	→ 1	$\rightarrow 0$	$\rightarrow 0$

).		

	\rightarrow 1	→ 1	$\rightarrow 0$	→ 1
	0	1	0	1

$\rightarrow 0$	_ → 1	$\rightarrow 0$	$\rightarrow 0$
0	1	0	1

).		

Polygraph

Accountable Binary Byzantine Consensus With Strong Validity

Accountable Binary Byzantine Consensus

Decision in different round

Give the intuition why two correct nodes can decide in different rounds

Which kind of output for discussion?

Which kind of output for discussion?

Bad idea...

Which estimation in ambiguous case

No default value for Validity

Common re-estimation

Can we decide when value is unique

Can we decide when value is unique

Different round decision

Allow attack without mutant messages

naive forward inefficient (to many messages anyway)

track commission can be non trivial

Extension of the algorithm

The original algorithm

- BV-broadcast (estimate value)
- build a set bin_value
- broadcast (bin_value)
- build a set value
- check the situation
- compute a new estimate value

The extension of the algorithm

- Signature : Authentication, Integrity, Non-Repudiation

-

Certificate : Justification of what we send, proof that we did not flip our value

Naive forward

Everybody forwards what he received

naive forward : msg-complexity ++

Naive justification

Everybody send all history

Naive justification : bit-complexity ++

Bounded Justification

Certificate of a bounded part of the history

Bounded justification

subvert the naive forward strategy

W

Conclusion

Accountable Byzantine Consensus With acceptable complexity

→ Disagreement → Detection →

Open Question

Generic accountable transformation

Game theory extension

Noisy Environment (Weaker Adversary)

Complexity Optimization

Suspicion Forever (only put the hash of the justification) and in case of disagreement : challenge the owner of the conflicting message to compute a justification that match the hash)

Appendix

Detection in hindsight

Pay an additional cost only if a disagreement occurred As Peer-Review (Haeberlen, Petr Kouznetsov, and Peter Druschel)

Detailed Solution

BV-Broadcast

(**BV-Obligation**). If at least (t^o + 1) correct processes BV-Broadcast the same value v, v is eventually added to the set bin_values_i , of each correct process pi.

(**BV-Justification**). If pi is non-faulty and $v \in bin_values_i$, v has been BV-broadcast by a non-faulty process.

(**BV-Uniformity**). If a value v is added to the set bin_values i of a correct process p i , eventually $v \in bin_values j$ at every non-faulty process pj.

(**BV-Termination**). Eventually, a set bin_values i of a correct process pi is not empty.

Binary Byzantine Consensus : CGLR17

```
operation bin propose (v_i) is
(01) est_i \leftarrow v_i; r_i \leftarrow 0;
(02) while (true) do
(03) r_i \leftarrow r_i + 1;
(04) BV_Broadcast EST[ri](est<sub>i</sub>);
(05) wait until (bin_values_i[r_i] \neq \emptyset);
(06) broadcast AUX [r<sub>i</sub>] (bin_values<sub>i</sub>[r<sub>i</sub>]);
(07) wait until (messages AUX [r_i] (b_val_{p(1)}), ..., AUX [r_i] (b_val_{p(n-t_0)})
                            have been received from (n-t_0) different process
                             p(x), 1 \leq x \leq n-t_0, and their contents are such that
                             \exists a non-empty set values_i such that
                             (i) values_i \subseteq bin_values_i[r_i] and
                             (ii) values_i = \bigcup_{1 \le x \le n-t_0} b val_x);
(08)
          b_i \leftarrow r_i \mod 2;
          if values_i = \{v\}
(09)
(10)
               then est_i \leftarrow v; if (v = b_i) then decide (v) if not yet done end if
(11)
                else est_i \leftarrow b_i
(12)
           end if :
(13) end while ;
```


bin values is no more empty

build values

Estimation : case singleton

(08)	$b_i \leftarrow r_i \mod 2$;
(09)	if $values_i = \{v\}$
(10)	then $est_i \leftarrow v$; if $(v = b_i)$ then decide (v) if not yet done end if
(11)	else $est_i \leftarrow b_i$
(12)	end if ;

Estimation : case couple

(08)
$$b_i \leftarrow r_i \mod 2$$
;
(09) if $values_i = \{v\}$
(10) then $est_i \leftarrow v$; if $(v = b_i)$ then $decide(v)$ if not yet done end if
(11) else $est_i \leftarrow b_i$
(12) end if ;

Binary Byzantine Consensus : CGLR17

```
operation bin propose (v_i) is
(01) est_i \leftarrow v_i; r_i \leftarrow 0;
(02) while (true) do
(03) r_i \leftarrow r_i + 1;
(04) BV_Broadcast EST[ri](est<sub>i</sub>);
(05) wait until (bin_values_i[r_i] \neq \emptyset);
(06) broadcast AUX [r<sub>i</sub>] (bin_values<sub>i</sub>[r<sub>i</sub>]);
(07) wait until (messages AUX [r_i] (b_val_{p(1)}), ..., AUX [r_i] (b_val_{p(n-t_0)})
                            have been received from (n-t_0) different process
                             p(x), 1 \leq x \leq n-t_0, and their contents are such that
                             \exists a non-empty set values_i such that
                             (i) values_i \subseteq bin_values_i[r_i] and
                             (ii) values_i = \bigcup_{1 \le x \le n-t_0} b val_x);
(08)
          b_i \leftarrow r_i \mod 2;
          if values_i = \{v\}
(09)
(10)
               then est_i \leftarrow v; if (v = b_i) then decide (v) if not yet done end if
(11)
                else est_i \leftarrow b_i
(12)
           end if :
(13) end while ;
```

The detection of the malicious coalition

What put on the attached certificate ?

The Characters

Donald

Detection

operation Culpability_Detection($v_j, r_j, Q_j^{r_j}$)

(01)
$$dec_j = S_j(j, v_j, r_j, Q_j^{\prime j})$$
 $(v_j = r_j \mod 2) \cap (\forall m \in Q_j^{\prime j}, m.value = v_j)$

(03) when dec_i is received from p_i (04) if $(v_i \neq r_i \mod 2) \cup (\exists m \in Q_i^{r_i} \mid m.value \neq v_i)$ (05) $G_{new} \leftarrow G_{old} \cup p_i$ (06) $proofs \leftarrow proofs \cup dec_i$ (07)exit end if (08) $if(v_i \neq v_j) \cap (r_i < r_j)$ (09) $inquiry_i \leftarrow 1$ end if (10) when $inquiry_i = 1$ (11)if $r_i - r_i = 1$ pick m from $T1_list_i^{r_i+1}$ sent from $p_k \mid m.value = v_i$ (12)pick $Q_k^{r_i}$ from m(13)\\m exists because of BV-Accountability $G_{new} \leftarrow G_{old} \cup (Q_i^{r_i} \cap Q_k^{r_i})$ (14)(15) $proofs \gets proofs \cup [Q_i^{r_i}, Q_k^{r_i}]$ (16)exit else pick m from $T1_list_j^{r_i+2}$ sent from $p_k \mid m.value = v_j$ (17)(18)pick $Q_q^{r_i}$ from m\\m exists because of BV-Accountability $G_{new} \leftarrow G_{old} \cup (Q_i^{r_i} \cap Q_q^{r_i})$ (19)(20) $proofs \leftarrow proofs \cup [Q_i^{r_i}, Q_q^{r_i}]$ (21) exit end if 96 (22) when $G_{old} \neq G_{new}$

 $broadcast(G_{new}, proofs)$ (23)

Detection

	А	в	С	D
r	$Q^r_A \stackrel{6}{\longrightarrow} A: \{v\}$,	$values_B^r = \{0,1\}$		$Q_D^r \xrightarrow{6} D: \{w\}$
r+1		$values_B^{r+1} = \{v\}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
r+2		$values_B^{r+2} \neq \{v\}$ $C \xrightarrow{4} B : w \&$ $(\underline{Q_C}^{r+1}, \underline{Q_D}^r)$		

At the same round r

(i)

 (r_A+2)

 r_A $(n-t_0)$

At the same round r

Penalty

 (t_0+1)

Future Work

- Bound the bit-complexity Concession
- Bound the probability of the success of an attack
- Propose a generic transformation for any BBC algorithm
- Implement it in the RedBellyBlockchain
Questions?

Probability of Success of an Attack

The Adversary

- anticipate the estimate value of every process
- all his connexion are infinitely rapid
- can manage like one person the actions of a malicious coalition of t < (n-t^o-1) processes
- can't forge the signature of a correct process
- **can't interfere** with the messages exchanges among honest users.

Assumption on the Network Uniformity

Let a correct process broadcast a message m in a specific line.

The probability distribution of the **interleaving of the reception** of m among honest follows a **uniform law**. That is every interleaving has the same probability to occur.

Algorithm extension

decision - pre-decision + special round and then decision

special round :

- broadcast his m* = {pre-decision + ledger containing some proofs}
- wait for (n-t^o) messages m*

To decide, i (resp. j) needs (1) : ($n-t-t^{\circ}-1$) messages m^* from other correct processes from a set P (resp. R) confirming his own pre-decision.

(2) the messages m^* from P (resp. R) to i (resp. j) has to be delivered before those from R (resp. P). (because 2 != pre-decision \rightarrow detection)

Decreasing the probability of the attack

repeat the special round k times :

- the cost in complexity is multiplied by k
- the probability is raised to the power of k

Naive forward

Everybody forwards what he received

naive forward

subvert the naive forward strategy

Detection in hindsight

Pay an additional cost only if a disagreement occurred

#1 \otimes \otimes \otimes pk \otimes X \otimes \otimes \otimes \otimes \otimes \otimes \bigotimes (\otimes) \otimes \searrow

Generic Solution

Justify what you send !

Class of Algorithm : C^o

Such an algorithm can be seen as a succession of instruction which can be divided into **rounds** which can be then divided into **pads** which can be divided into **lines**.

. . .

Every pad can be divided in specific lines


```
proof' = \underline{m}
```

proof' is enough to justify m'

If i and j disagree, they eventually build a proof of culpability

- If pk BV_T1_bdcst(1) in round 1, he built an associated justification PROOF with (n-t^o) messages : AUX[#0](1) If a correct node pi from

P decided 0 at round 0, he will $BV_T1_bdcst(0)$ in round 1 with an associated justification $PROOF^2$ with (n-t^o) messages : AUX[#0](0)The intersection of the two set has a size of at least (t^o+1) members who cheated and pj will get PROOF and $PROOF^2$ that he will broadcast to everybody.

- The same reasoning can be applied at the round 2.
- If nobody BV_T1_bdcst(1) at round 1 or 2, the consensus liveness can be tackled but no disagreement will occur

We want to generalize this idea

- decided in round r. This decision is reasoned by a set of message M and a set of proof P.

- decided in round r'. This decision is reasoned by a set of message M' and a set of proof P'.

Question : Are M, M', P and P' enough to always proof guilty a malicious coalition ?

Can we give a generic proof of it?

Possible approach

Divide the type of Byzantine behaviour : mute, mutant messages, commission.

The mute behaviour can only tackle the liveness.

The mutant messages, will be always detected.

A commission will need a justification, that is a **proof** in P, holding (n-t^o) messages.

We would like to show that for any algorithm in C° , those (n-t^{\circ}) messages in P will generate a collision with other (n-t^{\circ}) messages in P'.

Accountable-BV-Broadcast

```
operation ACC-BV-broadcast EST [r_i] (v_i, cert_i^{r_i})
(01) msg1_i = (T1, r_i, i, B_VAL(v_i), cert_i^{r_i})
(02) broadcast(msq1_i)
       when a T1-message msql_i is received from p_i
(03)
(04)
                if (valid(cert_i, v_i)) and no message from p_i has been added)
(05)
                       add msg1_i to T1 \ list_i;
                end if;
(06) when a T2-message msg2_i=(T2, v_i) is received from p_i
(07)
               add msq2_i in T2 \ list_i
(08) when \exists (m^1, (m^2, ..., m^{t_0+1})) \in T1\_list_i \times (T1\_list_i \cup T2\_list_i)^{t_0}
        \forall (p,q) \in [1, t_0 + 1]^2, \ (m^p.value = m^q.value = v) \cap (m^p.id \neq m^q.id) \cap
         (no message with value v has been sent)
               broadcast (T2, v)
(09)
(10) when \exists (m^1, (m^2, ..., m^{2t_0+1})) \in T1\_list_i \times (T1\_list_i \cup T2\_list_i)^{2t_0}
```

 $\forall (p,q) \in [1, 2t_0 + 1]^2, \ (m^p.value = m^q.value = v) \cap (m^p.id \neq m^q.id)$

bin values_i \leftarrow bin values_i $\cup \{v\}$

(11)

```
132
```

Accountable-BV-Broadcast

<u>forall t</u> :

BV-Accountability

Questions?