Polygraph

Accountable Byzantine Agreement

Table of Gontent

Model

Consensus Problem

Gracefully Degrading Consensus
Accountable Byzantine Consensus

GCommunication Network

Reliable ?
Point-to-point ® ®
® PJ
send(D<]) & PR X
Recv(g) " X
X 024

GCommunication Network

Reliable ?
Point-to-point ® ®
® PJ
send(D<]) & PR X
Recv(g) " X
X 024

Signature

Broadcast(&)

Signature

Authentication
Integrity

Non-Repudiation N

Signature

10

Signature

"

Byzantine processes

omission };@

commission

Mutant messages

12

Conflicting Signed Message

.

13

The Adversary

- anticipate the intern state of every process

- all his connexion are infinitely rapid

- can manage like one person the actions of a
malicious coalition of t processes

- can’t forge the signature of a correct process

- can’t interfere with the messages exchanges
among honest users.

14

What is the Gonsensus
Problem ?

000000
belongs to V

®V’£=.

X @

16

Solving the Gonsensus

Validity @

O, ®
Agreement ®. L 88)
[
Liveness ® o
o @ V=@
o
o ® Y

©
Y

L
Qe
© O

000000
) belongs to V
V, = @
Rz
o @
*2

17

Solving the Gonsensus

Validity

X
X X
Agreement h
R ® Vi

= no double-spending ® @ @

Liveness ® U= @ Valid() :

-+ Some txs 0 ﬁ h X ggrfgc;béei;g?t:‘igg
029

.

&

® - Everyone has the money

are eventually committed 029 to pay

18

How many can we tolerate ?

1980, M. Pease, R. Shostak and L. Lamport

Reaching Agreement in the Presence of Faults

t <n/3

19

Gracefully Degrading Byzantine Consensus

20

Gracefully Degrading
Byzantine Gonsensus

t < n/3 » Consensus (Safety +
Liveness)

>=n/3 » Safety (Hveress)

Impossihility of solving GDBG

Undistinguishable scenarios

®
&
&
Q \®

22

Scenarios A and B

Scenario G

DISAGREEMENT

24

Polygraph

Accountable Byzantine Consensus

25

Accountable Byzantine Gonsensus

t < n/3 » Consensus (Safety +
Liveness)

=+ Disagreement =» Detection »

Scenario G

DISAGREEMENT

27

On the validity

Weak Validity : If all processes are correct and if a correct process decides v, then v is the initial value of
some process.

Strong Validity : If all correct processes have the same initial value v and a correct process decides, then it
decides v

Here, We always authorize a valid Block proposed by a malicious node, but we still solve weak Validity to

(*\\

avoid trivial solution and follow the traditional litterature.

P

28

29

Binary Reduction

31

32

33

34

35

36

37

— 0

— 0
— 0

IEx
IBx
=1

38

A

Q

=
— 1

— 0

— 0
— 0

Polygraph

Accountable Binary Byzantine Consensus
With Strong Validity

39

Accountable Binary Byzantine
Consensus

t < n/3 » Consensus (Safety +
Liveness)

=+ Disagreement =» Detection »

Give the intuition why two correct nodes can decide in
different rounds

41

Bmary Gonsensus Archltecture

42

Bmary Gonsensus Archltecture

! What | am supposed to do ?

Dec="7

43

estimation

44

Bmary Gonsensus Archltecture

We decide'!

45

Which kind of output for discussion

ey
m
B o &

?
&,

Which kind of output for discussion

Bad idea... N =N ;
) [

Which estimation in ambiguous case

No default value for Validity

=S

Common re-estimation

rmod?2=1

@<

rmod2=0

c.

50

Gan we decide when value is unigque

Gan we decide when value is unigque

Common decision ‘i'

rmod2=1
I)
@
rmod2=0

Vf
’ &

rmod2 0]

. \V
DECLINED
RN 4

Decision
follow the
estimation of
the other
correct group

53

t<n/3

54

t>=n/3

55

Allow attack without mutant messages

= naive forward inefficient (to many
messages anyway)

= track commission can be non trivial

Extension of the
algorithm

The original algorithm

BV-broadcast (estimate value)
ouild a set bin_value 2

oroadcast (bin_value) @

ouild a set value

check the situation ﬂ

compute a new estimate value L

p——
®
p———

The extension of the algorithm

- Signature : Authentication, Integrity, Non-Repudiation

- Certificate : Justification of what we send, proof that we did not flip our value

S

U

59

t>=n/3

60

Naive forward

Everybody forwards what he received

61

naive forward : msg-complexity ++

register(l[r],k) register(l[r],q

round r, line | : I[r]

(k;am) (@.a,m)
ki,m) (@im)
ckm) | |@km)
(k,.z",m) (q;,m)

forward_ledger j(I[r])

O(n?) messages

Pj

Naive justification

Everybody send all history

63

Naive justification : bit-complexity ++

64

Bounded Justification

Certificate of a bounded part of the history

65

Bounded justiﬁation

=

N

Flip Attack

subvert the naive forward strategy

67

Elip attack

Elip attack

|..|

70

|..|

71

|..|

72

73

Accountable Byzantine Gonsensus
With acceptable complexity

t < n/3 » Consensus (Safety +
Liveness)

» Disagreement » Detection »

75

Generic accountable transformation
Game theory extension

Noisy Environment (Weaker Adversary)
Complexity Optimization

Suspicion Forever (only put the hash of the justification) and in case of
disagreement : challenge the owner of the conflicting message to compute a
justification that match the hash)

76

Appendix

Detection in hindsight

Pay an additional cost only if a disagreement occurred
As Peer-Review (Haeberlen, Petr Kouznetsov, and Peter Druschel)

78

79

BV-Broadcast

< : @ forall t :
t<n/3 ° ? ® rorall t
BV-Obligation ® ® BV-Accountability

. *e < 2 ®
BV-Justification N A .

N
BV-Uniformity X ° ® ® o 5
BV-Termination R R
P o
R X
@ o

80

(BV-Obligation). If at least (t° + 1) correct processes BV-Broadcast the same value v,
v is eventually added to the set bin_values_i, of each correct process pi.

(BV-Justification). If pi is non-faulty and v € bin_values_i, v has been
BV-broadcast by a non-faulty process.

(BV-Uniformity). If a value v is added to the set bin_values i of a correct process p i
, eventually v € bin_values j at every non-faulty process pj.

(BV-Termination). Eventually, a set bin_values i of a correct process pi is hot empty.

81

BV-Accountability
If e belongsto @ of & ,then

9

! has a valid send by %

justifying the postlng of e by

% captures the motivation of /
O

“4

%

3

82

Binary Byzantine Gonsensus : GGLR17

operation bin_propose (1) is
(01) est; +—wv;; 1 +—0;
(02) while (true) do

(03)
(04)
(05)
(06)
(07)

(08)
(09)
(10)
(11)
(12)

T T+ 1;
BV_Broadcast EST[ri](est:);
wait until (bin_values;[r;] #0);
broadcast AUX[r:] (bin_valuesi[r:]) ;
wait until (messages AUX[r;](b_val,y), ..., AUX[r;](b_val,in—,))
have been received from (n—1)) different process
plz),1<x<n-—1{;, and their contents are such that
3 a non-empty set wvalues; such that
(1) values;, C bin_values;[r;] and
(ii) valuesi = Urce<n—tob_valy);
by + r; mod 2;
if values; = {v}
then est; + v; if (v =2>b,) then decide(v) if not yet done end if
else esl; + b;
end if ;

(13) end while ;

83

(04) BV_Broadcast EST[ri](est:);
*®
QR

o

o0
belongs to V
R Vi = @
¥ @
@

84

bin values is no more empty

(05) wait until (bin_values;[r;] # 0);
(06) broadcast AUX[ri] (bin_values:|ri]);

o O

® &
& X

85

build values
DO e

X
® & & -

(07) wait until (messages AUX[r;] (b_val,1y), ..., AUX[r;](b_valyin—e,))

/\\ /w\ /\\ have been received from (n—1p) different process

\\/ N \\/ N \\/ X ple).1<x<n-—1;,, and their contents are such that
' 3 a non-empty set values; such that

(1) wvalues; C bin_values;[r;] and
(ii) va,lues. = UleSn—-be_'Ual.t) N

86

scenario 1

o@.

®

®

&
& X
X &

?
® 9

(i) wvalues; C bin_values;[r;] and
(ii) wvalues; = Ui<z<n-tob_vals)

87

scenario 2

BHG oo 5 DD
o

® ® N
® & &
X & ==
) \ o ®®® ®

(1) wvalues; C bin_values;[r;] and

(ii) walues; = Ui<z<n—tob_valy) °

7 N

(08)
(09)
(10)
(11)
(12)

by +— r; mod 2;

if values; = {v}
then est; «+ v; if (v =2>,) then decide(v) if not yet done end if
else est; + b;

end if ;

89

(08)
(09)
(10)
(11)
(12)

by +—r; mod 2;

if values; = {v}
then est; < v; if (v =2>0,) then decide(v) if not yet done end if
else est; + b;

end if ;

90

Binary Byzantine Gonsensus : GGLR17

operation bin_propose (1) is
(01) est; +—wv;; 1 +—0;
(02) while (true) do

(03)
(04)
(05)
(06)
(07)

(08)
(09)
(10)
(11)
(12)

T T+ 1;
BV_Broadcast EST[ri](est:);
wait until (bin_values;[r;] #0);
broadcast AUX[r:] (bin_valuesi[r:]) ;
wait until (messages AUX[r;](b_val,y), ..., AUX[r;](b_val,in—,))
have been received from (n—1)) different process
plz),1<x<n-—1{;, and their contents are such that
3 a non-empty set wvalues; such that
(1) values;, C bin_values;[r;] and
(ii) valuesi = Urce<n—tob_valy);
by + r; mod 2;
if values; = {v}
then est; + v; if (v =2>b,) then decide(v) if not yet done end if
else esl; + b;
end if ;

(13) end while ;

91

The detection of the
malicious coalition

What put on the attached certificate ?

92

The Characters

Charlie

93

The Inquiry

VN NN NN N N N N

NN NN NN

A AN SN\

e e St e

R R A

A NSNS AN SN

AN AN NN NN PN

PR/ NN NN NN

94

Guilty processes

operation Culpability_Detection (v;,7;. Q;")
dec; = S;(4,v5,75,Q7) \\(v; = r; mod 2) N (Vm € Q}, m.value = v;)

(01)
(02)

(03)
(04)
(05)
(06)
(07)

(08)
(09)

(10)
(11)
(12)
(13)

(14)
(15)

(16)

(17)
(18)

(19)
(20)

(21)

(22)
(23)

broadcast(dec;) =

when dec; is received from p;
if (vi # ri mod 2) U (3m € Q| m.value # vi)

Grew +— Gold U Pr
proofs + proofsUdec;
exit

end if
if(vi # v;) N (ri <13)

ngquiry; < 1

end if

when tnquiry; = 1
if r;—r=1

else

pick m from Tl_l-ist;"+l sent from pi|m.value = v;
pick Q' from m

T \\m exists because of BV-Accountability
Grew +— Gota U (Q:‘ n Q:A)
proofs « proofsU[Q}", Q}']
exit
pick m from Tl_list;"*"z sent from pi|m.uwvalue = v;
pick Qi from m

\\m exists because of BV-Accountability

Gncw 5= Gohl U (Q:I nQ;')
proojs<—-proost[Q_:‘,Q_;‘]
exit

end if

when Gold # Gn:w 96
broadcast (Guew, proofs)

A B C D
’ Qn — A:{v}, | valuesy ={0,1} Qp — D : {w)
r+1 valuesy ' = {v} D 5 C: wk&

Qo)
r+ 2 valuesl? # {v}

4

C — B : w
(&'HH-Q_DT)

&

97

At the same round r

Certificate

QY — A:{v}
%

(i) walues; C bin_values;[r;] and
(ii) wvalues; = Ui<z<n—tob_valy)

(’I“A + 2)

99

Certificate

NN

100

Certificat,

("’A + 1) 101

Certificate

NN

103

TA

At the same round r

Certificate

Q;{‘ — A:

{v}

2

Certificate

Qp — D:{w}

rA

106

Future Work

- Bound the bit-complexity Concession
- Bound the probability of the success of an

attack
- Propose a generic transformation for any BBC

algorithm
- Implement it in the RedBellyBlockchain

108

Questions ?

109

110

Probabhility of Success
of an Attack

The Adversary

- anticipate the estimate value of every process

- all his connexion are infinitely rapid

- can manage like one person the actions of a
malicious coalition of t < (n-t°-1) processes

- can’t forge the signature of a correct process

- can’t interfere with the messages exchanges
among honest users.

12

Assumption on the Network Uniformity

Let a correct process broadcast a message m in a specific line.

The probability distribution of the interleaving of the reception of m among honest
follows a uniform law. That is every interleaving has the same probability to occur.

13

Algorithm extension

decision = pre-decision + special round and then decision
special round :

- broadcast his m* = {pre-decision + ledger containing some proofs}
- wait for (n-t°) messages m*

To decide, i (resp. j) needs (1) : (n-t-t°-1) messages m* from other correct processes
from a set P (resp. R) confirming his own pre-decision.

(2) the messages m* from P (resp. R) to i (resp. j) has to be delivered before those
from R (resp. P). (because 2 != pre-decision = detection)

14

probability of success of the attack

100 4

10-2 4

10~% -

10—6 4

10—8 4

10—10 4

10—12 N

proba t=5n/12
proba t=n/2
proba t=7n/12
proba t=2n/3 \

20

1 I I

40 60 80 100

120

15

Decreasing the probability of the attack

repeat the special round k times :

- the cost in complexity is multiplied by k
- the probability is raised to the power of k

116

Naive forward

Everybody forwards what he received

17

naive forward

register(l[r],k) register(l[r],q

round r, line | : [[r]

(k,a,m) (q,a,m)
(k,.i','m) (q,. i.,.m)
w«km | @km)
(k,.z.;m) (q,;,m)

forward_ledger j(I[r])

O(n?) messages

Pj

18

Flip Attack

subvert the naive forward strategy

19

Elip attack

#1

Elip attack

Elip attack

122

Detection in hindsight

Pay an additional cost only if a disagreement occurred

123

Elip attack

124

Justify what you send !

125

Class of Algorithm : G°

Such an algorithm can be seen as a succession of instruction which can be divided
into rounds which can be then divided into pads which can be divided into lines.

|0
|1

|2

126

Every pad can bhe divided in specific lines

receive(m)
compute
send(m’)

where m holds (n-t°)
message

extension

receive(m-+proof)
check(m+proof)

compute

send(m’+proof’)

where proof holds (n-t°)
proofs holding (n-t°) messages

proof = m

proof’ is enough to justify m’

127

If i and j disagree, they eventually bhuild a
proof of culpabhility

- If pk BV_T1_bdcst(1) in round 1, he built an associated justification PROOF with (n-t°) messages : AUX[#0](1) If a correct node pi from
P decided 0 at round 0, he will BV_T1_bdcst(0) in round 1 with an associated justification PROOF? with (n-t°) messages : AUX[#0](0)
The intersection of the two set has a size of at least (t°+1) members who cheated and pj will get PROOF and PROOF? that he will broadcast to
everybody.
- The same reasoning can be applied at the round 2.
- Ifnobody BV_T1_bdcst(1) at round 1 or 2, the consensus liveness can be tackled but no disagreement will occur

#1

129

We want to generalize this idea

- decided in round r. This decision is reasoned by a set of message M
and a set of proof P.

- decided in round r’. This decision is reasoned by a set of message M’

and a set of proof P’.

Question : Are M, M’, P and P’ enough to always proof guilty a malicious coalition ?

Can we give a generic proof of it ? 130

Possible approach

Divide the type of Byzantine behaviour : mute, mutant messages, commission.
The mute behaviour can only tackle the liveness.

The mutant messages, will be always detected.

A commission will need a justification, that is a proof in P, holding (n-t°) messages.

We would like to show that for any algorithm in C°, those (n-t°) messages in P will
generate a collision with other (n-t°) messages in P’.

131

Accountahble-BV-Broadcast

operation ACC-BV-broadcast EST[r;] (v, cert.’)

(01)
(02)

(03)

(04)
(05)

(06)

(07)

(08)

(09)

(10)

(11)

msgl; = (T'1,r;, ¢, B_VAL(v;), cert;*)
broadcast(msgl;)

when a Tl-message msgl;, is received from p;
if (walid(certj,v;) and no message from p; has been added)
add msgl; to T1_list; ;
end if;

when a T2-message msg2;=(12,v;) is received from p;
add msg2; in T2_list;

when 3I(m!,(m?,...,m*)) € T1_list; x (T1_list; UT2_list;)™ |
Y(p, q) € [1,to + 1)%, (mP.value = m%.value = v) N (m?.id # m2.id)N
(no message with value v has been sent)
broadcast (72,v)

when 3(m!, (m?,...,m?*Y)) e T1_list; x (T1_list; UT?2_list;)?o |
Y(p,q) € [1,2t0 + 1], (mP.value = m%.value = v) N (MP.id # m.id)
bin_values; < bin_values; U {v}

132

Accountahble-BV-Broadcast

< : @ forall t :
t<n/3 ° ? ® rorall t
BV-Obligation ® ® BV-Accountability

. *e < 2 ®
BV-Justification N A .

N
BV-Uniformity X ° ® ® o .
BV-Termination R R
P o
R X

133

Questions ?

134

