Rationals vs Byzantine Players in Committee-Based Blockchains

Y. Amoussou-Guenou^{a,b}, B. Bias^c,

M. Potop-Butucaru^b, S.Tucci-Piergiovanni^a

^a CEA, LIST ^b Sorbonne Université, CNRS, Laboratoire d'Informatique de Paris 6

° HEC Paris

BLOCKCHAIN

Potentially unbounded set of processes that communicate in a network through message passing

Distributed ledger

Tamper-resistant

Build in an append only manner

CONSENSUS

Termination

Every non-faulty process eventually decides some value

Agreement

If there is a non-faulty process that decides a value B, then eventually all the Non-faulty processes decide B

Validity

A decided value is valid, it satisfies the predefined predicate

COMMITTEE-BASED BLOCKCHAINS

Committee

Dissecting Tendermint

- Yackolley Amoussou-Guenou^{1,2}, Antonella Del Pozzo¹, Maria Potop-Butucaru², and Sara Tucci-Piergiovanni¹
- ¹ CEA LIST, PC 174, Gif-sur-Yvette, 91191, France
 ² Sorbonne Université, CNRS, UMR 7606, LIP6, Paris, France

HotStuff: BFT Consensus with Linearity and Responsiveness

Maofan Yin Cornell University VMware Research Dahlia Malkhi VMware Research Michael K. Reiter UNC-Chapel Hill VMware Research Guy Golan Gueta VMware Research Ittai Abraham VMware Research

block to be appended

• Committees are rewarded for their work

Blockchain@LINCS | Yackolley Amoussou-Guenou

RATIONAL BEHAVIOUR & SYSTEM MODEL

Q. Are the consensus properties (Termination and Validity) guaranteed with the presence of rational participants ?

Ordered set of n processes/players

Messages are signed and signatures cannot be forged Processes cannot lie about who created a message

Synchronous communication

Messages cannot be lost

Following the BAR Model[1], participants are either

- o Rational
- o Byzantine

Assumption: There are more rational processes than Byzantine

[1] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth, 'BAR fault tolerance for cooperative services', in *Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP'05)*, 2005, pp. 45–58.

Blockchain@LINCS | Yackolley Amoussou-Guenou

OBJECTIVES

$$(R * \mathbb{1}_{(\sigma_i^{\text{send}}(H_i^T)=1)} * \mathbb{1}_{(\text{block accepted at }T)} - \kappa \mathbb{1}_{(\text{invalid block accepted})}) - \sum_{t=1}^T \left(c_{check} \mathbb{1}_{\sigma_i^{\text{check}}(h_i^t)=1)} + c_{send} \mathbb{1}_{(\sigma_i^{\text{send}}(H_i^t)=1)} \right)$$

 $\kappa > R > c_{check} > c_{send}$

EXAMPLES OF EXECUTION 3 MESSAGES REQUIRED

Perfect Bayesian equilibrium

- 1. Choose actions maximizing their objective function,
- 2. Rationally anticipate the strategies of the others, and
- **3.** Draw rational inferences from what they observe, using their expectations about the strategies of the others and Bayes law, whenever it applies.

CONSENSUS AGAINST RATIONALS

Q. Are the consensus properties (Termination and Validity) guaranteed with the presence of rational participants ?

n is the total number of processes *v* is the minimum number of required messages for block's production *f* is the number of Byzantine processes (f>1)

➤ When f ≥ v, in equilibrium, all rational participants send a message without checking validity

Termination holds

Validity is not guaranteed

When f < v, there exists an equilibrium where all rational participants do not check block's validity, nor send a message

- When f < v, if the cost of producing an invalid block is "high enough", there is an equilibrium where there is always a valid block produced
 - For a process i, if i ≤ n-v+f+1 then i checks block's validity and sends a message iff the block is valid
 - For a process i, if i > n-v+f+n (i ≤ n) i sends a message without checking block's validity

Termination holds *Validity* holds

CONCLUSIONS & PERSPECTIVES

Analyse of rational behaviour in Committee-based Blockchains against Byzantine processes

Extend the current work with more settings

Merci ! Thank You !

EXAMPLE OF EXECUTION (1/2) 3 MESSAGES REQUIRED

