Green Mining: toward a less energetic impact of cryptocurrencies

Philippe Jacquet (Nokia Bell Labs) Bernard Mans (Macquarie University) Blockchain workshop 2019 June 12 LINCS, Paris

Energy wasted by Bitcoin

- 40 G kWh/year
- A country like Greece
- 6% France
- 0.25% World

Proof of Work

• Each block miner must find a hash value with 74 initial zeroes out of 256 bits.

- Difficulty is adjusted in order to have
 - 10 mn inter-block time in average

Evolution of difficulty

Change every 2016 blocks (approx 2 weeks)

Bitcoin: Mining Difficulty and Price

Alternative to PoW

• The block mining via Inversed leader election

Direct leader election

- n initial competitors a probability p.
 - Eg n=10⁶, p=0.5
 - At each step survivors survive with probability p p^{I}
 - Process stops when # survivors=0
- n -leader(s) is/are the last survivor(s),

Reverse leader election

- Take k such that $p^k n \ll 1$
 - At each step leaders selected with proba p^{k-1}
 - Process stops when # leaders>0

Properties of reverse leader election

For n<p^{-k}=N the number of leaders (block mined per election) M_n is bounded in distribution

$$= E[M_n] < \min\{n, AN^{1/k}\}, A \approx \frac{1}{\log(1/p)}$$

- For N= 2^{32} and k=16: less than 4
- -For n>N $E[M_n] > np$
- N and p fixed as initial parameters,
 - no need to review and update every 2016 blocks

Green mining format

• Regular block

#field	value
1	Previous block hash
2	date
3	Transactions ref
4	Next block call value
5	Block hash

- Next block call value field in regular block
 - It replaces nonce field
 - is fixed by protocol to be $2^{256}/N$
 - Next regular block should have hash value smaller than previous block call value.

Empty blocks

- With N=2³² the difficulty is not very big
 - But no nonce to tune
 - The hash value can only be modified by modifying the transaction references. More difficult!
- Virtually impossible to have a hash value smaller 2²⁵⁶/N. (or take N=2⁶⁴)
 - After one minute an empty block is inserted with a call value higher by a factor 1/p.

Empty blocks

#field	Field value
1	Hash of previous block
2	date
3	Next block call value
4	Block hash

If no regular block is mined after one minute, a new empty block is mined with call value =previous call value/p The process restarts after k rounds (call value reaches 2²⁵⁶-1)

Empty blocks

#field	Field value
1	Hash of previous block
2	date
3	2 ²⁸⁰ -1
4	Block hash

Last call value releases all blocks

Empty blocks mining

(Y4<Call3)

(Y5<Call1)

• Empty block mining options

- Can be mined by a central entity
- Can be mined in a decentralized mode
 - Filtered by the block dates
- Implicit empty block mining
 - Regular blocks filtered by hash values and dates

Performance analysis

- Explicit empty block mining
- Theorem [explicit empty blocks]: $E[M_n] = np^k + \sum_{i=1}^k np^{k-i} \prod_{i<i} (1-p^{k-i})^n$ - Proof: the probability to reach round 1 is $\prod_{i<i} (1-p^{k-i})^n$
- Lemma

$$\sum_{k=1}^{k} np^{k-1} \prod_{i<1} (1-p^{k-i})^n \le \frac{1}{p} \sum_{k \in Z} np^k \exp\left(-np^k\right) = O\left(\frac{1}{p}\right) = O(N^{1/k})$$

Performance analysis (continued)

Performance analysis (continued)

• Theorem distribution of number of mined blocks [explicit empty blocks]: $E\left[u^{M_n}\right] = (1 + p^k (u - 1))^n - (1 - p^k)^n + \sum_{1 < k} ((1 + p^{k-1} (u - 1))^n - (1 - p^{k-1})^n)) \prod_{j < 1} (1 - p^{k-j})^n + u^n \prod_{j < k} (1 - p^{k-j})^n$

Performance analysis (end)

• Simulation of green mining

Conclusion

- The Energy waste due to proof of work is not sustainable in cryptocurrencies in the near future.
- A reversed leader election can replace the burden of the PoW for mining difficulty
- Highly dynamic, work for any mining population up to N (arbitrary large)
- No need of parameter update

Perspective

- How resilient is the scheme against attack
- Eg 51% attack.
 - block nursing vs PoW farming
 - Preliminary analysis indicates
 - to get ε advantage one should need $2\varepsilon \log(1/p)$ more resources than the adversary