Matthieu Latapy

complexnetworks.fr

Context

Approacl

Basics

Degrees

Density

Paths

Further

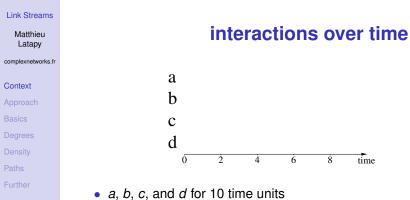
Analysis of Financial Transactions with Link Streams

Matthieu Latapy, Tiphaine Viard, Clémence Magnien

http://complexnetworks.fr

latapy@complexnetworks.fr

LIP6 – CNRS and Sorbonne Université Paris, France

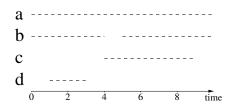


complexnetworks.fr

Context

- Approacl
- Basics
- Degrees
- Density
- Paths
- Further

interactions over time



- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3

complexnetworks.fr

Context

Approad

Basics

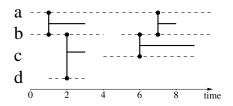
Degrees

Density

Paths

Further

interactions over time



- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

complexnetworks.fr

Context

Approac

Basics

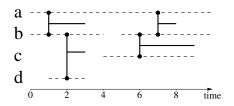
Degrees

Density

Paths

Further

interactions over time



- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

e.g., social interactions, network traffic, money transfers, chemical reactions, etc.

complexnetworks.fr

Context

Approac

Basics

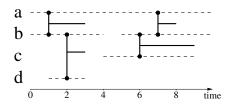
Degrees

Density

Paths

Further

interactions over time



- a, b, c, and d for 10 time units
- a always present, b leaves from 4 to 5, c present from 4 to 9, d from 1 to 3
- a and b interact from 1 to 3 and from 7 to 8; b and c from 6 to 9; b and d from 2 to 3.

e.g., social interactions, network traffic, money transfers, chemical reactions, etc.

how to describe such data?

Matthieu Latapy

complexnetworks.fr

Approad

Daoloo

Degrees

Density

Paths

Further

signal analysis, time series \longrightarrow dynamics

graph theory network science \rightarrow structure

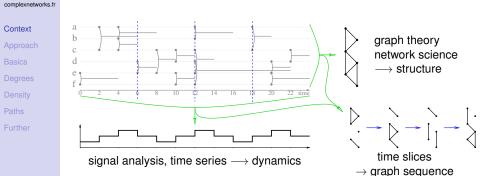
Matthieu Latapy complexnetworks.fr

structure and dynamics?

ightarrow graph sequence

Matthieu Latapy

structure and dynamics?



information loss what slices? graph sequences?

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

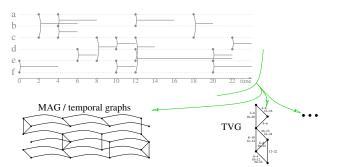
Degrees

Density

Paths

Further

structure and dynamics



lossless but graph-oriented

+ ad-hoc properties (mostly path-related) + contact sequences + relational event models + ...

Matthieu Latapy

complexnetworks.fr

Approach

Basics

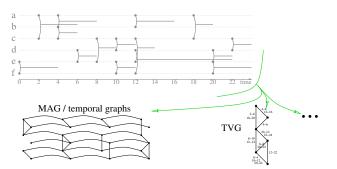
Degrees

Density

Paths

Further

structure and dynamics



lossless but graph-oriented

+ ad-hoc properties (mostly path-related) + contact sequences + relational event models + ...

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

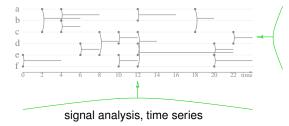
Paths

Further

what we propose

deal with the stream directly

stream graphs and link streams



graph theory network science

wanted features: simple and intuitive, comprehensive, time-node consistent, generalizes graphs/signal

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

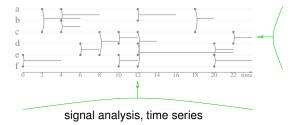
Paths

Further

what we propose

deal with the stream directly

stream graphs and link streams



graph theory network science

wanted features: simple and intuitive, comprehensive, time-node consistent, generalizes graphs/signal

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

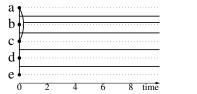
Paths

Further

graph-equivalent streams

stream with no dynamics:

nodes always present, either always or never linked



Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

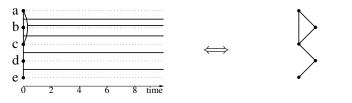
Paths

Further

graph-equivalent streams

stream with no dynamics:

nodes always present, either always or never linked



stream properties = graph properties

$\hookrightarrow \textbf{generalizes graph theory}$

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

Paths

Further

our approach

very careful generalization of the most basic concepts

stream graphs and link streams numbers of nodes and links clusters and induced sub-streams density and paths

\hookrightarrow buliding blocks for higher-level concepts

neighborhood and degrees clustering coefficient betweenness centrality many others

+ ensure consistency with graph theory + ensure classical relations are preserved

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

Paths

Further

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph S = (T, V, W, E) *T*: time interval, *V*: node set $W \subseteq T \times V, E \subseteq T \times V \otimes V$

 $(t, v) \in W \Leftrightarrow v$ is present at time t $\mathcal{T}_v = \{t, (t, v) \in W\}$

 $(t, uv) \in E \iff u$ and v are linked at time t $T_{uv} = \{t, (t, uv) \in E\}$

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

Paths

Further

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph S = (T, V, W, E)

T: time interval, *V*: node set $W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

 $(t, v) \in W \Leftrightarrow v$ is present at time t $T_v = \{t, (t, v) \in W\}$

 $(t, uv) \in E \iff u$ and v are linked at time t $T_{uv} = \{t, (t, uv) \in E\}$

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

Paths

Further

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph S = (T, V, W, E)

T: time interval, *V*: node set $W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

 $(t, v) \in W \Leftrightarrow v$ is present at time t $T_v = \{t, (t, v) \in W\}$

 $(t, uv) \in E \iff u$ and v are linked at time t $T_{uv} = \{t, (t, uv) \in E\}$

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

Paths

Further

definition of stream graphs

Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph S = (T, V, W, E)

T: time interval, *V*: node set $W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

 $(t, v) \in W \Leftrightarrow v$ is present at time t $T_v = \{t, (t, v) \in W\}$

 $(t, uv) \in E \Leftrightarrow u$ and v are linked at time t $T_{uv} = \{t, (t, uv) \in E\}$

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

Paths

Further

definition of stream graphs

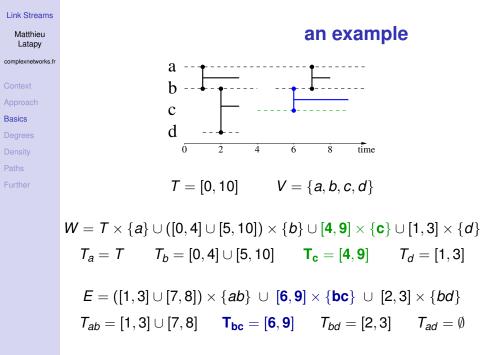
Graph G = (V, E) with $E \subseteq V \otimes V$ $uv \in E \Leftrightarrow u$ and v are linked

Stream graph S = (T, V, W, E)

T: time interval, *V*: node set $W \subseteq T \times V$, $E \subseteq T \times V \otimes V$

 $(t, v) \in W \Leftrightarrow v$ is present at time t $T_v = \{t, (t, v) \in W\}$

 $(t, uv) \in E \Leftrightarrow u$ and v are linked at time t $T_{uv} = \{t, (t, uv) \in E\}$



Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

Paths

Further

a few remarks

works with... discrete time, continuous time, instantaneous interactions or with durations, directed, weighted, bipartite...

if
$$\forall v, T_v = T$$
 then $S \sim L = (T, V, E)$ is a link stream

if $\forall u, v, T_{uv} \in \{T, \emptyset\}$ then $S \sim G = (V, E)$ is a graph-equivalent stream

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

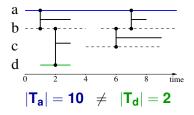
Densit

Paths

Further

size of a stream graph

How many nodes? How many links?



Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

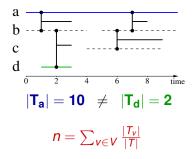
Density

Paths

Further

size of a stream graph

How many nodes? How many links?



 $n = \frac{|\mathbf{T}_a|}{10} + \frac{|T_b|}{10} + \frac{|T_c|}{10} + \frac{|\mathbf{T}_d|}{10} = \mathbf{1} + 0.9 + 0.5 + \mathbf{0.2} = 2.6 \text{ nodes}$

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

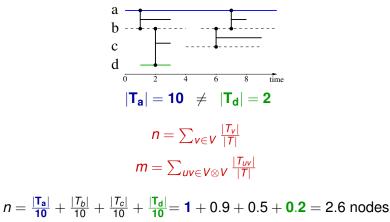
Density

Paths

Further

size of a stream graph

How many nodes? How many links?



Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

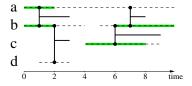
Density

Paths

Further

clusters, sub-streams

Cluster in G = (V, E): a subset of V. Cluster in S = (T, V, W, E): a subset of $W \subseteq T \times V$.



 $\textit{C} = [0,2] \times \{\textit{a}\} \ \cup \ ([0,2] \cup [6,10]) \times \{\textit{b}\} \ \cup \ [4,8] \times \{\textit{c}\}$

S(C) sub-stream induced by C $S(C) = (T, V, C, E_C)$

ightarrow properties of (sub-streams induced by) clusters

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

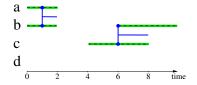
Densit

Paths

Further

clusters, sub-streams

Cluster in G = (V, E): a subset of V. Cluster in S = (T, V, W, E): a subset of $W \subseteq T \times V$.



 $\textit{C} = [0,2] \times \{a\} \ \cup \ ([0,2] \cup [6,10]) \times \{b\} \ \cup \ [4,8] \times \{c\}$

S(C) sub-stream induced by C $S(C) = (T, V, C, E_C)$

 \hookrightarrow properties of (sub-streams induced by) clusters

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

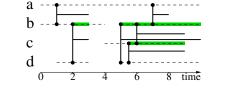
Density

Paths

Further

neighborhood

in
$$G = (V, E)$$
: $N(v) = \{u, uv \in E\}$
in $S = (T, V, W, E)$: $N(v) = \{(t, u), (t, uv) \in E\}$



 $\textit{N(d)} = ([2,3] \cup [5,10]) \times \{b\} \cup [5.5,9] \times \{c\}$

N(v) is a cluster

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

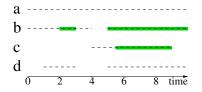
Density

Paths

Further

degree

in G and in S: d(v) is the size of N(v)



 $N(d) = ([2,3] \cup [5,10]) \times \{b\} \cup [5.5,9] \times \{c\}$ $d(d) = \frac{|[2,3] \cup [5,10]|}{10} + \frac{|[5.5,9]|}{10} = 0.6 + 0.35 = 0.95$

- degree distribution, average degree, etc
- if graph-equivalent stream then graph degree
- relation with n and m

Matthieu Latapy

complexnetworks.fr

Context

Approac

Basics

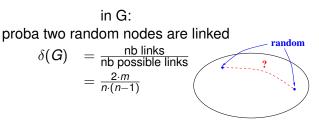
Degrees

Density

Paths

Further

density



in S:

proba two random nodes are linked at a random time instant

$$\begin{split} \delta(S) &= \frac{\text{nb links}}{\text{nb possible links}} \\ &= \frac{\sum_{uv \in V \otimes V} |T_{uv}|}{\sum_{uv \in V \otimes V} |T_u \cap T_v|} \end{split}$$

Matthieu Latapy

complexnetworks.fr

Context

Approac

Basics

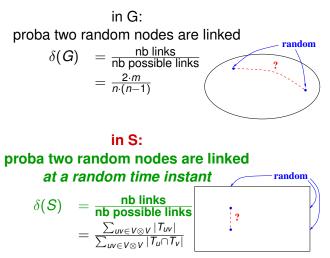
Degrees

Density

Paths

Further

density



- if graph-equivalent stream then graph density
- relation with n, m, and average degree

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

Density

Paths

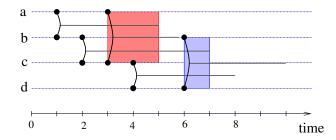
Further

cliques

in G: sub-graph of density 1 all nodes are linked together

in S: sub-stream of density 1

all nodes interact all the time



Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

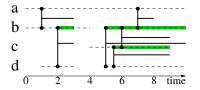
Density

Paths

Further

clustering coefficient

in G and in S: density of the neighborhood $cc(v) = \delta(N(v))$



 $\textit{N}(\textit{d}) = ([2,3] \cup [5,10]) \times \{\textit{b}\} \cup [5.5,9] \times \{\textit{c}\}$

Matthieu Latapy

complexnetworks.fr

Context

Approach

Basics

Degrees

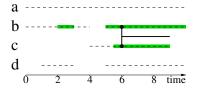
Density

Paths

Further

clustering coefficient

in G and in S: density of the neighborhood $cc(v) = \delta(N(v))$



$$\begin{split} \textit{N}(\textit{d}) &= ([2,3] \cup [5,10]) \times \{\textit{b}\} \cup [5.5,9] \times \{\textit{c}\} \\ \textit{cc}(\textit{d}) &= \delta(\textit{N}(\textit{d})) = \frac{|[6,9]|}{|[5.5,9]|} = \frac{6}{7} \end{split}$$

Matthieu Latapy

paths

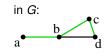
Dasics

Degrees

Density

Paths

Further



in S

from *a* to *d*: (*a*, *b*), (*b*, *c*), (*c*, *d*) length: 3

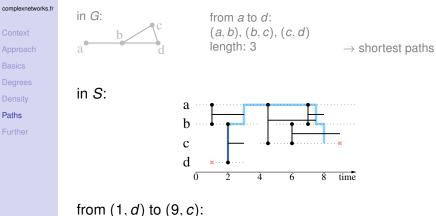
 \rightarrow shortest paths

from (1, d) to (9, c): (2, d, b), (3, b, a), (7.5, a, b), (8, b, c)

length: 4 duration: 6 \rightarrow shortest paths \rightarrow fastest paths

Matthieu Latapy

paths



(2, d, b), (3, b, a), (7.5, a, b), (8, b, c)

length: 4 duration: 6

 \rightarrow shortest paths \rightarrow fastest paths

Matthieu Latapy

complexnetworks.fr

Context

Basics

Degrees

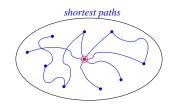
Density

Paths

Further

betweenness centrality

in G: b(v) = fraction of *shortest paths* from any *u* to any *w* in *V* that involve *v*



in S: b(t, v) = fraction ofshortest fastest paths from any (i, u) to any (j, w) in W that involve (t, v)

Matthieu Latapy

complexnetworks.fr

Context

Basics

Degrees

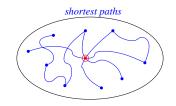
Density

Paths

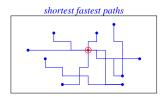
Further

betweenness centrality

in G: b(v) = fraction of *shortest paths* from any *u* to any *w* in *V* that involve *v*

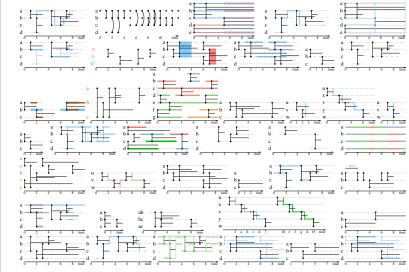


in S: b(t, v) = fraction ofshortest fastest paths from any (i, u) to any (j, w) in W that involve (t, v)



Further

many other concepts



arxiv preprint - SNAM publication

conclusion

Latapy complexnetworks.fr

Link Streams

Matthieu

Context

- Approach
- Basics
- Degrees
- Density
- Paths
- Further

we provide a language (set of concepts) that:

- makes it easy to deal with interaction traces,
- combines structure and dynamics in a consistent way,
- generalizes graphs / networks ; signals / time series ?
- meets classical and new algorithmic challenges,
- opens new perspectives for data analysis,
- clarifies the interplay interactions \leftrightarrow relations.

studies in progress: internet traffic, financial transactions, mobility/contacts, mailing-lists, sales, etc.