
The Lightning Network
LINCS - Paris 2019

Bastien Teinturier <bastien@acinq.fr> - https://acinq.co/

mailto:bastien@acinq.fr
https://acinq.co/

How does Bitcoin Work?
● Blockchain

○ Transactions grouped into blocks
○ Blocks include the id of the previous block
○ hash(block) < target

● UTXO
○ The “coins” in Bitcoin
○ Transactions spend the outputs of previous transactions
○ UTXO set + block -> new UTXO set

● Scripts
○ Bitcoin has smart contracts too!
○ Set the rules for spending a UTXO

Bitcoin doesn’t scale?

Global Consensus: everyone sees, validates and stores everything, and must
agree on the same blockchain.

tx, blocks

tx, blocks

tx, blocks

tx, blocks

tx, blocks

The Lightning Network
What if we don’t publish everything?

The Lightning Network
● P2P Network of payment channels
● Based on Bitcoin (LN transactions are Bitcoin transactions)
● Enables cheap, instant payments (and micropayments)
● Extremely scalable
● And still trustless

Blockchain

Lightning

“Layer 2” application based on Bitcoin, with different properties/tradeoffs

The Lightning Network
● Payment Channel

○ Payment model: HTLC
○ Trustless

● Network of Payment Channels
○ Conditional payments: A pays B iff B pays C
○ And still trustless

● Routing
○ Source routing
○ Onion packets

Payment Channel

B
IT

C
O

IN
 B

LO
C

K
C

H
A

IN

BobAlice

OPEN
First tx is published on the blockchain.
Funds are “locked” in the channel

UPDATE
Publishable (signed by both parties) but
not published!

CLOSE
Last tx is published on the blockchain.
Funds are “unlocked”

3 BTC 7 BTC

4 BTC 6 BTC

Closing Tx
 4 BTC to Alice, 6 BTC to Bob

Published on the blockchain
Funds are unlocked

.

Commit Tx #1A SIGB
SIGA

Funding Tx
10 BTC to (Alice + Bob)

Published on the blockchain
Funds are locked in channel

SIGA

SIGB
SIGA

Commit Tx #1BSIGB
SIGA

Commit Tx #2A SIGB
SIGA

Commit Tx #nA SIGB
SIGA

Commit Tx #2BSIGB
SIGA

Commit Tx #nBSIGB
SIGA

10 BTC 0 BTC

3 BTC 7 BTC

10 BTC 0 BTC

4 BTC 6 BTC

Payment Channel
Payment Model: Hashed Time Locked Contract (HTLC)

● I will pay you for the preimage of hash
● I you don’t reply, I get my money back after a delay

Lighting Payment Request: Amount + Hash + Delay

Description = 1 Espresso Coin Panna, 1 Scala Chip Frappuccino
H = c2f7adaac99b5609b7df702ab9cf2b096b806e1a3c040994dde427811cfb071f
NodeId = 035b55e3e08538afeef6ff9804e3830293eec1c4a6a9570f1e96a478dad1c86fed
Amount = 3600000 MilliSatoshis
Timestamp = 1514890568

Updating Channels

● Alice wants to buy a picture of a cat from Bob
● Bob says “send me an HTLC for 2 BTC redeemable with the preimage of H”
● This dialog happens off-band (web pages, QR codes, …)

Alice’s Commit Tx
6 BTC to Alice
4 BTC to Bob

Signed by Alice

Signed by Bob

Bob’s Commit Tx
6 BTC to Alice
4 BTC to Bob

Bob creates a random
value R and computes
H = Hash(R)

Send me an HTLC for 2 BTC

I want to buy this lovely picture of a cat

Signed by Alice

Signed by Bob

Updating Channels

exchanging signatures

● Alice creates a new Commit Tx for Bob, which includes the HTLC
● Alice signs Bob’s new Commit Tx and send it to Bob

Bob’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC,H) to Bob

Alice’s Commit Tx
6 BTC to Alice
4 BTC to Bob

Signed by Alice

Signed by Bob

Bob’s Commit Tx
6 BTC to Alice
4 BTC to Bob

Signed by Alice

Signed by Bob
Signed by Alice

● Bob checks that Alice’s signature is valid.
● Bob now has a valid new commit tx that includes the HTLC
● Bob replies with the revocation secret for his old commitment tx
● Alice checks that the revocation secret is valid. Bob cannot publish his old tx

anymore

Signed by Alice

Signed by Bob

Alice’s Commit Tx
6 BTC to Alice
4 BTC to Bob

Signed by Alice

Signed by Bob

Bob’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Bob’s revocation secret

 Bob’s new commitment
point

Updating Channels

exchanging signatures

+

● Bob creates a new Commit Tx for Alice, which includes the HTLC
● Bob signs Alice’s new Commit Tx and send it to Alice

Alice’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob Signed by Alice

Signed by Bob

Alice’s Commit Tx
6 BTC to Alice
4 BTC to Bob

Signed by Alice

Signed by Bob

Bob’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Signed by Bob

Updating Channels

exchanging signatures

● Alice checks that Bob’s signature is valid.
● Alice now has a valid new commit tx that includes the HTLC
● Alice replies with the revocation secret for his old commitment tx
● Bob checks that the revocation secret is valid. Alice cannot publish her old tx

anymore

Signed by Alice

Signed by Bob

Alice’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Bob’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Updating Channels

exchanging signatures

Alice’s revocation secret

 Alice’s new
commitment point
+

● Bob sends R to Alice
● Alice checks that Hash(R) == H

R
Signed by Alice

Signed by Bob

Alice’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Bob’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Updating Channels

fulfilling HTLCs

● Alice create a new Commit Tx for Bob which updates his balance and sends
her signature to Bob

● Bob checks the signature and replies with his revocation secret

Bob’s New Commit Tx
4 BTC to Alice
6 BTC to Bob

Updating Channels

exchanging signatures
Alice’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Bob’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Signed by Alice

Bob’s revocation secret

 Bob’s new commitment
point
+

● Bob creates a new Commit Tx for Alice, with updated balances
● Bob signs Alice’s new Commit Tx and send it to Alice
● Alice checks the signature and replies with her revocation secret

Alice’s New Commit Tx
4 BTC to Alice
6 BTC to Bob

Updating Channels

exchanging signatures
Alice’s New Commit Tx
4 BTC to Alice
4 BTC to Bob
HTLC(2 BTC, H) to Bob

Signed by Alice

Signed by Bob

Bob’s New Commit Tx
4 BTC to Alice
6 BTC to Bob

Signed by Alice

Signed by Bob

Signed by Bob

Alice’s revocation secret

 Alice’s new
commitment point
+

Alice and Bob now have fully signed commit tx with updated channel balances

Updating Channels

fully signed commit tx

Alice’s New Commit Tx
4 BTC to Alice
6 BTC to Bob

Signed by Alice

Signed by Bob

Bob’s New Commit Tx
4 BTC to Alice
6 BTC to Bob

Signed by Alice

Signed by Bob

Payment Channel
● Why is this trustless?
● What if Alice or Bob want to publish one of their old commit tx that gives them

more money than the current one?
○ After all, each of their commit tx is valid and publishable….

Payment Channel
● Why is this trustless?
● What if Alice or Bob want to publish one of their old commit tx that gives them

more money than the current one?
○ After all, each of their commit tx is valid and publishable…

● Penalty Transaction!
○ In Alice’s commit tx, each output that sends money to her includes a “circuit breaker”
○ This “circuit breaker” says: send everything to Bob if he knows a revocation secret
○ When Bob signs Alice’s new commit tx, she sends back the revocation secret for her current

commit tx
○ You can only publish your latest commit transaction!

■ Or you risk losing everything

Commit Tx Structure

Funding Tx

To (A + B)

Commit Tx

A’s main output

HTLC offered by A

HTLC received by A

HTLC timeout tx

HTLC success tx

B’s main output

To A + delay

To B + revocation key

To B

To B + revocation key

To A + delay

timeout

A tries to cheat

To B + payment preimage

To B after timeout To A + delay

To B + revocation key

Commit Tx Structure

Funding Tx

To (A + B)

Commit Tx

A’s main output

HTLC offered by A

HTLC received by A

HTLC timeout tx

HTLC success tx

B’s main output

To A + delay

To B + revocation key

To B

To B + revocation key

To A + delay

timeout

A tries to cheat

To B + payment preimage

To B after timeout To A + delay

To B + revocation key

If A cheats B spends all
the outputs

Commit Tx Structure

Funding Tx

To (A + B)

Commit Tx

A’s main output

HTLC offered by A

HTLC received by A

HTLC timeout tx

HTLC success tx

B’s main output

To A + delay

To B + revocation key

To B

To B + revocation key

To A + delay

timeout

A tries to cheat

To B + payment preimage

To B after timeout To A + delay

To B + revocation key

A’s outputs are delayed
to give B time to spend
them with the penalty tx

Network of Payment Channels

Multi-Hop Payments

Carol tells Alice to send her an HTLC for 2 BTC redeemable for the preimage of H

Alice Bob Carol
6 BTC 4 BTC 3 BTC 5 BTC

@Carol: I want to buy
this picture of a cat

@Alice: send me an
HTLC for 2 BTC

Multi-Hop Payments

forward HTLC

Alice sends an HTLC to Bob and asks him to forward the same HTLC to Carol

HTLC(2 BTC, H) HTLC(2 BTC, H)
Alice Bob Carol

6 BTC 4 BTC 3 BTC 5 BTC

● Carol sends the Payment Preimage to Bob
● Bob forwards the Payment Preimage to Alice

R

Multi-Hop Payments

forward Preimage

Alice Bob Carol

6 BTC 4 BTC 3 BTC 5 BTC

R

● Alice, Bob and Carol have updated their balances
● Bob still has 7 BTC (but Bob might ask for a small fee to relay payments)

4 BTC 6 BTC 1 BTC 7 BTC

Alice Bob Carol

Multi-Hop Payments

update balance

Network of Payment Channels

You can pay anyone you
can find a route to!

Alice Bob

Routing
Routing in LN mixes 2 different concepts:

● How to find a route?
○ This is not really part of the LN protocol. You can

compute routes locally, ask someone to do it for you…

● How to send and relay payments once you have
a route?

○ This is part of LN
○ Sender creates an “onion” packet that tells each node

what the next hop is
○ Nodes “peel off” their own decryption layer, and forward

the decrypted packet

encrypted for C

encrypted for D

encrypted for B

encrypted for A

Routing

sender destination

Does not know its position in the route .i.e

● Does not know who the sender is
● Does not know who the final recipient is
● But knows the amount and preimage (*)

Lightning TL;DR

The Lightning Network

Payment
Channels

2013

Feb.
2015

Lightning Network
(J.Poon, T.Dryja)

Nov.
2015

Reaching the
ground with LN
(R.Russell)

Sept/Oct
2016

Interop tests
Flare tests
1st tx on testnet

Oct
2016

LN specifications
workshop in Milan May

2017

First “real”
payment on LTC

Dec
2017

Specs V1.0 RC
Interop tests
1st tx on mainnet

April
2018

All 3 major
impls on
mainnet

Open Source, RFC-like specifications
● BOLT #1: Base Protocol
● BOLT #2: Peer Protocol for Channel Management
● BOLT #3: Bitcoin Transaction and Script Formats
● BOLT #4: Onion Routing Protocol
● BOLT #5: Recommendations for On-chain Transaction Handling
● BOLT #7: P2P Node and Channel Discovery
● BOLT #8: Encrypted and Authenticated Transport
● BOLT #9: Assigned Feature Flags
● BOLT #10: DNS Bootstrap and Assisted Node Location
● BOLT #11: Invoice Protocol for Lightning Payments

See https://github.com/lightningnetwork/lightning-rfc

https://github.com/lightningnetwork/lightning-rfc

The Lightning Network
Several independent, open source implementations

● C-Lightning (C)
● Eclair (Scala)
● Lnd (Go)
● And Ptarmigan (C++), Rust-Lighting (Rust), LIT

(Python), Electrum (Python)...

The Lightning Network
Public Network

● 8500 Nodes
● 34000 Channels
● 940 BTC ($7.3M)
● Average Node Age: 5 months
● Average Channel Age: 3 months

The Lightning Network
Public Network

● 8500 Nodes
● 34000 Channels
● 940 BTC ($7.3M)
● Average Node Age: 5 months
● Average Channel Age: 3 months

This is just the public LN network!

Nodes that don’t relay payments don’t need to be
announced (mobile nodes are not for example)

LN would work with millions of terminal nodes and
thousands of relaying nodes

