
1

Sycomore, a Permissionless Distributed Ledger
that Self-adapts to Transaction Demand

Emmanuelle Anceaume, CNRS / IRISA

Antoine Guellier, CNRS / IRISA
Romaric Ludinard, IMT / IRISA

and Bruno Sericola, INRIA / IRISA

2

Cryptocurrency and payment systems (Bitcoin-like)

• Fully decentralized
• No public key infrastructure
• Permissionless

7 Such constraints make the general problem of consensus
impossible to solve

• Relies on rational behavior and incentives mechanisms
3 To reach a consensus on the cryptocurrency state

3

The state of the cryptocurrency system is represented by transactions

• Transfers currency from one user to another
• No inherent notion of identities or individual accounts which
« own » bitcoins

• Ownership simply means knowing a private key which is able
to make a signature that redeems outputs (scripts)

Transaction 20ab3701i

Transaction 74201ab3c

UTXO

UTXO = Unspent Transaction Output

Output #2
account + ฿ + script

Output #1
account + ฿ + script

Output #1
account + ฿ + script

Output #1
account + ฿ + script

Input #1

Output ref. + script

Transaction 1206ac34e

Output #2
account + ฿ + script

Output #3
account + ฿ + script

Output #1
account + ฿ + script

Input #1

Output ref. + script

Input #2

Output ref. + script

Input #1

Output ref. + script

Input #2

Output ref. + script

Do not forget Tx fees, i.e., ฿ input > ฿ output

UTXO

4

3 Signed transactions guarantee that only the owner of an
output can redeem coins

7 However signatures do not prevent double-spending attacks
3 All transactions must be published in a global permanent

transaction log, and any output must be redeemed by at most
one subsequent transaction

This log is implemented as a series of blocks of transactions

• Each block containing the hash of the previous block,
committing this block as the unique antecedent

• This is the blockchain

5

• Topology formed through a randomized process
• No coordinating entity
• Broadcast is based on flooding/gossiping neighbors’ link

Tx d	->	e

Tx a	->	B

Tx a	->	B Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx a	->	B

Tx d	->	e

Tx d	->	e

Tx d	->	e

Tx d	->	e

Tx d	->	e

Tx a	->	B

Tx d	->	e

Tx d	->	e

Tx a	->	B

Tx a	->	B
Tx d	->	e

6

Properties of the Network

1. Connectivity
• Each node should receive any broadcast information

2. Low latency 1

msg. transmission time
block creation time interval

� 1

3 Allows to keep the probability of fork small
3 PoW mechanism allows this ratio to continuously hold
7 No more than 7 Tx/s can be permanently confirmed in

average ! !

1. J. Garay and A. Kiayias, The Bitcoin Backbone Protocol : Analysis and
Application, Eurocrypt 2015

7

Objective : Building a ledger with the following properties

1. A ledger with several parallel (but not conflicting) chains such
that

• Causality between transactions is respected
• Transactions should be partitioned among the chains

Transactions	prefixed	
with	“0”

Transactions	prefixed	
with	“1”

Transactions	prefixed	
with	“00”

Transactions	prefixed	
with	“01”

Transactions	prefixed	
with	“10”

Transactions	prefixed	
with	“11”

B0
Bitcoin’s	blockchain

Transactions	prefixed	
with	“0”	and	“1”

B0

8

Objective : Building a ledger with the following properties

1. A ledger with several parallel (but not conflicting) chains
2. Valid (and not conflicting) blocks should be mined in parallel

New	blocks

New	block

B0
Bitcoin’s	blockchain

B0

9

Objective : Building a ledger with the following properties

1. A ledger with several parallel (but not conflicting) chains
2. Valid (and not conflicting) blocks should be mined in parallel
3. Miners should not be able to predict the chain of the ledger to

which their blocks will be appended
• Cannot devote their computational power to a specific chain

New	blocks

New	block

B0
Bitcoin’s	blockchain

B0

10

Objective : Building a ledger with the following properties

1. A ledger with several parallel (but not conflicting) chains
2. Valid (and not conflicting) blocks should be mined in parallel
3. Miners should not be able to predict the chain of the ledger to

which their blocks will be appended
4. Overloaded chains should dynamically split and underloaded

ones should dynamically merge

11

o All these features should be verifiable by anyone at any time

12

Switching from a chain of blocks

13

... to Sycomore, a directed acyclic graph of blocks

Figure – Sycomore ledger

14

Model

• Permissionless system
• Adversary : no more than 50% of the network hashing power is
held by the adversary

• Nodes have access to safe cryptographic functions (hash
function and signature scheme)

• Each object of the system (i.e., transaction and block) is
assumed to be uniquely identified

• No public key infrastructure to establish node identities

15

Definition (Splittable block)

• Let cmin ≥ 1 be a constant
• Let C = 〈b1b2 . . . bc〉 be a
chain with c ≥ cmin and
0 < Γ < 1

• Block bc is called a
splittable block if

1
cmin

cmin∑
j=1

(Load(bc−cmin+j) > Γ

cmin

Splittable
block

16

Definition (Mergeable block)

• Let cmin ≥ 1 be a constant
• Let C = 〈b1b2 . . . bc〉 be a
chain with c ≥ cmin and
0 < γ < Γ ≤ 1

• Block bc is called a
mergeable block if

1
cmin

cmin∑
j=1

(Load(bc−cmin+j) < γ

cmin

Mergeable
block

Any block in C which is neither splittable nor mergeable is called a
regular block.

17

0

1

0 0

1 1

00 00 00 00 00

01 01 01 01

10 10 10 10 10

11 11 11 11 11

0 0 0

00 00 00

01 01 01

1 1 1

10 10 10

11 11 11

100 100

𝜀 𝜀 𝜀

000 000

Regular	block

Splittable block Mergeable blocks

B0

18

The predecessor of a block is neither predictable nor choosable

19

0

1

0 0

1 1

00 00 00 00 00

01 01 01 01

10 10 10 10 10

11 11 11 11 11

0 0 0

00 00 00

01 01 01

1 1 1

10 10 10

11 11 11

100 100

𝜀 𝜀 𝜀

000 000

Regular	block

Splittable block Mergeable blocks

B0

Figure – Local view Lu of the ledger L at some node u

20

The predecessor of a block is neither predictable nor choosable

Recall that Bitcoin’s block header contains a commitment of the
chain state

H = {(h(bεk),mε)}

1. In Sycomore, the header of a block b contains a commitment
of the DAG state

H =

{(
h(b`11), `

′
1,m

`
′
1

)
, . . . ,

(
h(b

`j
j), `

′
j ,m

`
′
j

)}
, where

- h(b`ii), 1 ≤ i ≤ j : reference to each leaf block
- `′i , 1 ≤ i ≤ j : label of the future successor of b`ii
- m`′i , 1 ≤ i ≤ j : Merkle root of the set of pending transactions
whose prefix matches label `′i

21

011110…

000101…

111100…

010100…
110110…

111100…

001110…

Transactions	pool

Partitionning of	the	transactions	according to	ledger’s labels

Label	:	000 Label	:	001 Label	:	01 Label	:	10 Label	:	11

000101…000010… 000111…

H(T1,T2)

T1 T2 Tn

H(Tn-1,Tn)

m000

000101…000010… 000111…

H(T’1,T’2)

T’1 T’2 T’m

H(T’m-1,T’m)

m001

22

𝜀

1 1 1

10 10 10 10 10

11 11 11 11 11

1 1 1

10 10 10

11 11 11

𝜀 𝜀

0 0 0

00 00 00 00 00

01 01 01 01 01

0 0

00 00 00

01 01 01

000

0
001

(h(b1),000,m000)

b1

b2

b3

b4

b5

(h(b2),001,m001)
(h(b3),01,m01)
(h(b4),10,m10)
(h(b5),11,m11)

b

Figure – Local view Lu of the ledger L at some node u

23

The predecessor of a block is neither predictable nor choosable

2. Characterization of the predecessor of block b
• Computation of the proof of work ν on block b’s header
• Predecessor of block b = leaf block b`ii s.t. the label `0 of its

successor in H verifies

`0 = arg min(
h(b

`i
i),`

′
i ,m

`
′
i

)
∈H

D(`
′

i , h(H||ν) mod 2d)

d is the number of bits of the longest label of the successors in
H
D is the distance function between two bit strings (numerical
XOR value)

24

𝜀

1 1 1

10 10 10 10 10

11 11 11 11 11

1 1 1

10 10 10

11 11 11

𝜀 𝜀

0 0 0

00 00 00 00 00

01 01 01 01 01

0 0

00 00 00

01 01 01

000

0
001

(h(b1),000,m000)

b1

b2

b3

b4

b5

(h(b2),001,m001)
(h(b3),01,m01)
(h(b4),10,m10)
(h(b5),11,m11)

b

H =
{(

h(b000), 000,m000) , . . . , (h(b11), 110,m110) , (h(b11), 111,m111)}
1. Computation of ν s.t. h(H||ν) ≤ T

25

𝜀

1 1 1

10 10 10 10 10

11 11 11 11 11

1 1 1

10 10 10

11 11 11

𝜀 𝜀

0 0 0

00 00 00 00 00

01 01 01 01 01

0 0

00 00 00

01 01 01

000

0
001

(h(b1),000,m000)

b1

b2

b3

b4

b5

(h(b2),001,m001)
(h(b3),01,m01)
(h(b4),10,m10)
(h(b5),11,m11)

b

H =
{(

h(b000), 000,m000) , . . . , (h(b11), 110,m110) , (h(b11), 111,m111)}
1. Computation of ν s.t. h(H||ν) ≤ T

h(H||ν) = 000000 . . . 0010010

26

𝜀

1 1 1

10 10 10 10 10

11 11 11 11 11

1 1 1

10 10 10

11 11 11

𝜀 𝜀

0 0 0

00 00 00 00 00

01 01 01 01 01

0 0

00 00 00

01 01 01

000

0
001

(h(b1),000,m000)

b1

b2

b3

b4

b5

(h(b2),001,m001)
(h(b3),01,m01)
(h(b4),10,m10)
(h(b5),11,m11)

b

H =
{(

h(b000), 000,m000) , . . . , (h(b11), 110,m110) , (h(b11), 111,m111)}
h(H||ν) = 000000 . . . 0010010

2. For each b`, compute D(`′, 000000 . . . 0010010 mod 2d)

27

𝜀

1 1 1

10 10 10 10 10

11 11 11 11 11

1 1 1

10 10 10

11 11 11

𝜀 𝜀

0 0 0

00 00 00 00 00

01 01 01 01 01

0 0

00 00 00

01 01 01

000

0
001

(h(b1),000,m000)

b1

b2

b3

b4

b5

(h(b2),001,m001)
(h(b3),01,m01)
(h(b4),10,m10)
(h(b5),11,m11)

b

H =
{(

h(b000), 000,m000) , . . . , (h(b11), 110,m110) , (h(b11), 111,m111)}
2. For each b`, compute D(`′, 000000 . . . 0010010 mod 2d)
3. Thus predecessor of b is block whose label is 01

28

𝜀

1 1 1

10 10 10 10 10

11 11 11 11 11

1 1 1

10 10 10

11 11 11

𝜀 𝜀

0 0 0

00 00 00 00 00

01 01 01 01 01

0 0

00 00 00

01 01 01

000

0
001

b’s hreader:	
No	explicit	reference
to	its predecessor

01

b

H =
{(

h(b000), 000,m000) , . . . , (h(b11), 110,m110) , (h(b11), 111,m111)}
For mergeable blocks (i.e. two tuples are the argmin), the predecessor is
both mergeable blocks

29

The predecessor of a block is neither predictable nor choosable

To summarize
• Deriving the predecessor of a block requires to solve a
notoriously difficult problem

• The predecessor is sealed in block header
• No explicit reference to the predecessor in block header
• Verifiable at any time by anyone

30

How forks are resolved ?

Rule (Fork Rule)

At any time, keep the DAG for which the confirmation level of the
genesis block is the largest.

• Computed by determining the longest path of blocks that
commits B0

• Fork rule is exactly the same as Bitcoin’s one !
• Natural since it amounts to favor the DAG that has been
acknowledged by the majority of the miners

31

1e− 10

1e− 09

1e− 08

1e− 07

1e− 06

1e− 05

0.0001

0.001

0.01

0 5 10 15 20 25 30

P
ro
b
a
b
il
it
y
o
f
fo
rk

d
u
ri
n
g
[0
,t
]

Elapsed time t (seconds)

Πnak λ0 = 1/600
Πsyc λ = λ0 c = 5
Πsyc λ = λ0, c = 10
Πsyc λ = λ0 c = 20

(a) Probability of fork as a function of
time. The block creation rate is Bit-
coin’s one, i.e., λ = 1/600).

Let {N(t), t ≥ 0} be a Poisson
process with rate λ representing
the number of events in the
interval (0, t)
For every i = 1, . . . , c ,

pi (t) = P{Ni (t) ≥ 2}
= 1− e−λpi t(1 + λpi t).

If pi = 1/c , we get

pi (t) = P{Ni (t) ≥ 2}
= 1− e−λt/c(1 + λt/c).

32

0

100

200

300

400

500

600

1 5 10 15 20 25 30 35

M
ea
n
in
te
r-
b
lo
ck

ti
m
e
(s
)

c

1/(cλ0)

Figure – Mean inter-block time as a
function of the number of leaf
blocks c to meet Bitcoin’s
probability of fork

• E.g., c = 30 leaf blocks,
blocks can be mined every
20 seconds !

• This adaptiveness is a
remarkable feature of
Sycomore

33

Conclusion and Open issues

• We have presented a new way to organise both transactions
and blocks in a distributed ledger

• Sycomore allows us to keep all the remarkable properties of the
Bitcoin blockchain in terms of security, immutability, and
transparency, while enjoying higher throughput and
self-adaptivity to transactions demand.

What’s next ?
• Antoine Durand will
present you our solution
to switch from a
proof-of-work setting to a
proof-of-stake one !

