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Blockchain: a distributed public ledger

Ideally, the Blockchain is an append-only (immutable) chain of

Oa002020

Each block contains the hash of the previous block and other
application dependent information (as transactions).
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Few Important points

Blockchain runs on a distributed system: different nodes are
involved

Nodes communicate exchanging messages.

Each node has a local copy of the Blockchain
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Append a new block

When there is a new block, who appends it?
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Append a new block

When there is a new block, who appends it?

We want to preserve a chain shape, so we do not want to have
multiple writers per time:
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Two main approaches to append

We want one writer per block height.

m Proof-of-Work: a peer in order to append a new block has to
provide as a proof the solution of a cryptographic puzzle.

— it may happen to have more than one peer writing
concurrently.
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Two main approaches to append

We want one writer per block height.

m Proof-of-Work: a peer in order to append a new block has to
provide as a proof the solution of a cryptographic puzzle.

— it may happen to have more than one peer writing
concurrently.

m Consensus: peers agree on the next block to append.
— Consensus does not scale;

©CEA_List 2019



list

There can be more than one peer that appends, i.e., solves the
PoW to append at the same block, in such case we have a fork.

()
0000

Fork Resolution: the longest chain is the main chain.

0,00
00,0
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What do we read?

0,00
000

Different peers can have a different version of the Blockchain (due
to network delays). Which kind of consistency is provided?

0.0
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Example: Smart Contracts on Blockchain

init:
x=0;

fy):
X=X+Y;
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Example: Smart Contracts on Blockchain

init:
x=0;
f(y):
(y)zszr . what is the value of x at
Y a generic time t at the two sites?
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Our contribution:

A unified construction providing formal specifications
capturing forkable and non-forkable blockchains

E. Anceaume et al. Blockchain Abstract Data Type.
In SPAA 2019

2017, A. Girault et al.,, Why You Can't Beat Blockchains:
Consistency and High Availability in Distributed Systems.

Formalizing and implementing



Abstract Data Type

Our approach:

m Blockchain formalized as a tree of blocks: BlockTree Abstract
Data Type;

read() e
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Abstract Data Type

Our approach:
B

B the block generation process is formalized as an Oracle
compoundable with the BlockTree: © Token Oracle Abstract
Data Type.

0,000
append() * ©
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Abstract Data Type

Our approach:
B

B the block generation process is formalized as an Oracle
compoundable with the BlockTree: © Token Oracle Abstract

Data Type.
ol

©
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BlockTree Abstract Data Type

The BlockTree Abstract Data Type exposes two operations:

m read(): selects a blockchain in the blocktree;

m append(b): appends the block b to the blocktree if such block
is valid, i.e., it satisfies a predicate P.
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Token Oracle

Any process that wants to append a block must call the oracle.
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Token Oracle

The Token Oracle ©) Abstract Data Type exposes two operations:

m getToken(bg, by): returns or not the right to extend the block

by with block by.
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Token Oracle

The Token Oracle ©) Abstract Data Type exposes two operations:

m getToken(bg, by): returns or not the right to extend the block

by with block by.

[ consumeToken(bfq): allows a valid block to be appended or
not, depending on how many blocks already extend b,.
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Frugal and Prodigal Token Oracles

A Frugal Oracle ©F  allows to append at most k blocks to the
same block.

A Prodigal Oracle ©p allows to append an unlimited number of
blocks to any block.
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Frugal and Prodigal Token Oracles

A Frugal Oracle ©F  allows to append at most k blocks to the
same block.

A Prodigal Oracle ©p allows to append an unlimited number of
blocks to any block.

E-E-(—
if eF,k>1 or ep
()
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Frugal and Prodigal Token Oracles

A Frugal Oracle ©F  allows to append at most k blocks to the
same block.

A Prodigal Oracle ©p allows to append an unlimited number of
blocks to any block.

if OF k=1
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BlockTree Abstract Data Type

The BlockTree Abstract Data Type exposes two operations:
m read(): selects a blockchain in the blocktree;

m append(b): appends the block b to the blocktree if such block
is valid, i.e., it satisfies a predicate P.

We establish two consistency criteria predicating on the result of
the read() operations.
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Blockchain Consistency Criteria
Eventual Consistency Criteria (EC):

B Local Monotonic Read;

m Validity;

m Ever Growing Tree;

m Eventual Prefix properties.

Strong Consistency Criteria (SC) :
B Local Monotonic Read;
m Validity;
m Ever Growing Tree;

m Strong Prefix properties.
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Strong Prefix Property
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Strong prefix property: for each pair of read() operations, one

returns a blockchain that is the prefix of the other or vice versa.
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Eventual Prefix Property

@ @@
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Eventual prefix property: For each read blockchain with a score

J

s, eventually all the subsequent read blockchains share a maximum

common prefix with a score of at least s.

©CEA_List 2019



Blocktree and Oracle ADT hierarchy

R(BT-ADTsc, OF k=1)

OF k=1 has Consensus number oo

R(BT-ADTsc, OF k>1)

R(BT-ADTsc, ©p)

R(BT-ADTec, OF k>1)

R(BT-ADTec, ©p)

Op has Consensus number 1

We compose the BlockTree ADT and the Oracle ADT as
R(BT-ADT, ©) in a hierarchy.

In this way, we can state implementability results on the weakest
combination and propagate them above.
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Impossibilities

m It is not possible to implement a Blockchain satisfying
Eventual Consistency if an update message is lost;
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Impossibilities

m It is not possible to implement a Blockchain satisfying
Eventual Consistency if an update message is lost;

B It is not possible to implement a Blockchain satisfying Strong
Consistency if a fork occurs;
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Impossibilities

m It is not possible to implement a Blockchain satisfying
Eventual Consistency if an update message is lost;

B It is not possible to implement a Blockchain satisfying Strong
Consistency if a fork occurs;
— OF k=1 is necessary;
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Impossibilities

m It is not possible to implement a Blockchain satisfying
Eventual Consistency if an update message is lost;

B It is not possible to implement a Blockchain satisfying Strong
Consistency if a fork occurs;

— OF k=1 is necessary;

- Consensus is necessary;

The best we can have in presence of Forks is Eventual Consistency.
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Mapping with existing solutions

References Refinement
Bitcoin %(BT-ADTEC, @p)

Ethereum R(BT-ADTgc,Op)

Algorand R(BT-ADTsc,OF k1)
ByZCOin %(BT—ADTsc, @F’kzl)
PeerCensus  R(BT-ADTsc,OF k=1)
Redbelly %(BT—ADTsc, @Ek:l)
Hyperledger R(BT-ADTsc,OF k=1)
Tendermint %(BT—ADTsc, @F,kzl)
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Conclusions and Future Work

B we presented a formal specification for characterizing
blockchains;

B and derived conclusion on their implementability in a
distributed system.

Future works.

B solvability of Strong and Eventual Prefix in message-passing
system;

m fairness properties for oracles;
E ...
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Validity Property
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Validity property: all the block read are valid (w.r.t. the

application level) and have been appended by some process.
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Local Monotonic Read Property
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Local monotonic read property: the score of the sequence of

J
blockchains read at the same peer never decreases.

score: it can be the length, the weight, etc.., it is a general way to measure and

compare blockchains.
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Ever Growing Tree Property
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Ever growing tree property: the score of returned blockchains

eventually grows.
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