BLOCKCHAIN ABSTRACT DATA TYPE

E. Anceaume, A. Del Pozzo, R. Ludinard, M. Potop-Butucaru, S. Tucci-Piergiovanni

Blockchain day, @LINCS BINSTITUT

CARNOT université.
o | PARIS'SACLAY

July 12t 2019

Blockchain: a distributed public ledger

Ideally, the Blockchain is an append-only (immutable) chain of

Oa002020

Each block contains the hash of the previous block and other
application dependent information (as transactions).

©CEA_List 2019

Few Important points

Blockchain runs on a distributed system: different nodes are
involved

Nodes communicate exchanging messages.

Each node has a local copy of the Blockchain

©CEA_List 2019

Append a new block

When there is a new block, who appends it?

©CEA_List 2019

Append a new block

When there is a new block, who appends it?

We want to preserve a chain shape, so we do not want to have
multiple writers per time:

©CEA_List 2019

Two main approaches to append

We want one writer per block height.

m Proof-of-Work: a peer in order to append a new block has to
provide as a proof the solution of a cryptographic puzzle.

— it may happen to have more than one peer writing
concurrently.

©CEA_List 2019

Two main approaches to append

We want one writer per block height.

m Proof-of-Work: a peer in order to append a new block has to
provide as a proof the solution of a cryptographic puzzle.

— it may happen to have more than one peer writing
concurrently.

m Consensus: peers agree on the next block to append.
— Consensus does not scale;

©CEA_List 2019

list

There can be more than one peer that appends, i.e., solves the
PoW to append at the same block, in such case we have a fork.

()
0000

Fork Resolution: the longest chain is the main chain.

0,00
00,0

©CEA_List 2019

What do we read?

0,00
000

Different peers can have a different version of the Blockchain (due
to network delays). Which kind of consistency is provided?

0.0

©CEA_List 2019

Example: Smart Contracts on Blockchain

init:
x=0;

fy):
X=X+Y;

-
~
w
=

Example: Smart Contracts on Blockchain

init:
x=0;
f(y):
(y)zszr . what is the value of x at
Y a generic time t at the two sites?

-
~
w
=

©CEA_List 2019

Blockchain, from the origin to nowadays

2008, 5 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System

Blockchain, from the origin to nowadays

2008, S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System

2015, Ethereum e , Hyperledger

2016, PeerCensus, ByzCoin

2017, RedBelly, Algorand A

.. and many others

Blockchain, from the origin to nowadays

2008, S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System

2015, Ethereum e , Hyperledger

2016, PeerCensus, ByzCoin
How to formalize them?
2017, RedBelly, Algorand A

.. and many others

Blockchain, from the origin to nowadays

2008, S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System

2015, Ethereum e , Hyperledger

2016, PeerCensus, ByzCoin
How to formalize them?
2017, RedBelly, Algorand A

. and many others

2017, A. Girault et al.,, Why You Can't Beat Blockchains:
Consistency and High Availability in Distributed Systems.

2018, A. Fernandez Anta et al., Formalizing and implementing

distributed ledger objects.

list

ceatech

Blockchain, from the origin to nowadays

2008, S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System

2015, Ethereum e , Hyperledger

2016, PeerCensus, ByzCoin

How to formalize them?
2017, RedBelly, Algorand A

. and many others
few attempts to

2017, A. Girault et al.,, Why You Can't Beat Blockchains:

. . P formalize Blockchain
Consistency and High Availability in Distributed Systems.

as a list of records
2018, A. Fernandez Anta et al., Formalizing and implementing

distributed ledger objects.

Blockchain, from the origin to nowadays

2008, 7 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System

2015, Ethereum e ,| Hyperledger

2016,/ PeerCensus, ByzCoin

How to formalize them?
2017, |RedBelly, Algorand A

. and many others
few attempts to

2017, A. Girault et al.,, Why You Can't Beat Blockchains:

. . P formalize Blockchain
Consistency and High Availability in Distributed Systems.

as a list of records
2018, A. Fernandez Anta et al., Formalizing and implementing

distributed ledger objects.

Blockchain, from the origin to nowadays

2008, 5 S. Nakamoto. |Bitcoin: A Peer-to-Peer Electronic Cash System

2015, [Ethereum e ,| Hyperledger

2016,/ PeerCensus, ByzCoin

How to formalize them?
2017, |RedBelly, Algorand A

. and many others
few attempts to

2017, A. Girault et al.,, Why You Can't Beat Blockchains:

. . P formalize Blockchain
Consistency and High Availability in Distributed Systems.

as a list of records
2018, A. Fernandez Anta et al., Formalizing and implementing

distributed ledger objects.

©CEA_List 2019

2008,0 S. Nakamoto. |Bitcoin:

Blockchain, from the origin to nowadays

A Peer-to-Peer Electronic Cash System

2015, [Ethereum e ,| Hyperledger &

2016, PeerCensus, ByzCoin

2017, |RedBelly, Algorand A

. and many others

2018, A. Ferndndez Anta et al.,
distributed ledger objects.

©CEA_List 2019

Our contribution:

A unified construction providing formal specifications
capturing forkable and non-forkable blockchains

E. Anceaume et al. Blockchain Abstract Data Type.
In SPAA 2019

2017, A. Girault et al.,, Why You Can't Beat Blockchains:
Consistency and High Availability in Distributed Systems.

Formalizing and implementing

Abstract Data Type

Our approach:

m Blockchain formalized as a tree of blocks: BlockTree Abstract
Data Type;

read() e

©CEA_List 2019

Abstract Data Type

Our approach:
B

B the block generation process is formalized as an Oracle
compoundable with the BlockTree: © Token Oracle Abstract
Data Type.

0,000
append() * ©

©CEA_List 2019

Abstract Data Type

Our approach:
B

B the block generation process is formalized as an Oracle
compoundable with the BlockTree: © Token Oracle Abstract

Data Type.
ol

©

©CEA_List 2019

BlockTree Abstract Data Type

The BlockTree Abstract Data Type exposes two operations:

m read(): selects a blockchain in the blocktree;

m append(b): appends the block b to the blocktree if such block
is valid, i.e., it satisfies a predicate P.

©CEA_List 2019

list
Token Oracle

Any process that wants to append a block must call the oracle.

©CEA_List 2019

list
Token Oracle

The Token Oracle ©) Abstract Data Type exposes two operations:

m getToken(bg, by): returns or not the right to extend the block

by with block by.

©CEA_List 2019

list
Token Oracle

The Token Oracle ©) Abstract Data Type exposes two operations:

m getToken(bg, by): returns or not the right to extend the block

by with block by.

[consumeToken(bfq): allows a valid block to be appended or
not, depending on how many blocks already extend b,.

©CEA_List 2019

Frugal and Prodigal Token Oracles

A Frugal Oracle ©F allows to append at most k blocks to the
same block.

A Prodigal Oracle ©p allows to append an unlimited number of
blocks to any block.

©CEA_List 2019

Frugal and Prodigal Token Oracles

A Frugal Oracle ©F allows to append at most k blocks to the
same block.

A Prodigal Oracle ©p allows to append an unlimited number of
blocks to any block.

E-E-(—
if eF,k>1 or ep
()

©CEA_List 2019

Frugal and Prodigal Token Oracles

A Frugal Oracle ©F allows to append at most k blocks to the
same block.

A Prodigal Oracle ©p allows to append an unlimited number of
blocks to any block.

if OF k=1

©CEA_List 2019

BlockTree Abstract Data Type

The BlockTree Abstract Data Type exposes two operations:
m read(): selects a blockchain in the blocktree;

m append(b): appends the block b to the blocktree if such block
is valid, i.e., it satisfies a predicate P.

We establish two consistency criteria predicating on the result of
the read() operations.

©CEA_List 2019

Blockchain Consistency Criteria
Eventual Consistency Criteria (EC):

B Local Monotonic Read;

m Validity;

m Ever Growing Tree;

m Eventual Prefix properties.

Strong Consistency Criteria (SC) :
B Local Monotonic Read;
m Validity;
m Ever Growing Tree;

m Strong Prefix properties.

©CEA_List 2019

Strong Prefix Property

_ Bele) EO-O-B® ‘

)

OOO® |,

Strong prefix property: for each pair of read() operations, one

returns a blockchain that is the prefix of the other or vice versa.

©CEA_List 2019

Eventual Prefix Property

@ @@

Yooo |

Eventual prefix property: For each read blockchain with a score

J

s, eventually all the subsequent read blockchains share a maximum

common prefix with a score of at least s.

©CEA_List 2019

Blocktree and Oracle ADT hierarchy

R(BT-ADTsc, OF k=1)

OF k=1 has Consensus number oo

R(BT-ADTsc, OF k>1)

R(BT-ADTsc, ©p)

R(BT-ADTec, OF k>1)

R(BT-ADTec, ©p)

Op has Consensus number 1

We compose the BlockTree ADT and the Oracle ADT as
R(BT-ADT, ©) in a hierarchy.

In this way, we can state implementability results on the weakest
combination and propagate them above.

©CEA_List 2019

Impossibilities

m It is not possible to implement a Blockchain satisfying
Eventual Consistency if an update message is lost;

©CEA_List 2019

Impossibilities

m It is not possible to implement a Blockchain satisfying
Eventual Consistency if an update message is lost;

B It is not possible to implement a Blockchain satisfying Strong
Consistency if a fork occurs;

©CEA_List 2019

Impossibilities

m It is not possible to implement a Blockchain satisfying
Eventual Consistency if an update message is lost;

B It is not possible to implement a Blockchain satisfying Strong
Consistency if a fork occurs;
— OF k=1 is necessary;

©CEA_List 2019

Impossibilities

m It is not possible to implement a Blockchain satisfying
Eventual Consistency if an update message is lost;

B It is not possible to implement a Blockchain satisfying Strong
Consistency if a fork occurs;

— OF k=1 is necessary;

- Consensus is necessary;

The best we can have in presence of Forks is Eventual Consistency.

©CEA_List 2019

Mapping with existing solutions

References Refinement
Bitcoin %(BT-ADTEC, @p)

Ethereum R(BT-ADTgc,Op)

Algorand R(BT-ADTsc,OF k1)
ByZCOin %(BT—ADTsc, @F’kzl)
PeerCensus R(BT-ADTsc,OF k=1)
Redbelly %(BT—ADTsc, @Ek:l)
Hyperledger R(BT-ADTsc,OF k=1)
Tendermint %(BT—ADTsc, @F,kzl)

©CEA_List 2019

list .
Conclusions and Future Work

B we presented a formal specification for characterizing
blockchains;

B and derived conclusion on their implementability in a
distributed system.

Future works.

B solvability of Strong and Eventual Prefix in message-passing
system;

m fairness properties for oracles;
E ...

©CEA_List 2019

Validity Property

@ @@

Yoo0

Validity property: all the block read are valid (w.r.t. the

application level) and have been appended by some process.

©CEA_List 2019

Local Monotonic Read Property

)O@ @@

Yoo0

Local monotonic read property: the score of the sequence of

J
blockchains read at the same peer never decreases.

score: it can be the length, the weight, etc.., it is a general way to measure and

compare blockchains.

©CEA_List 2019

Ever Growing Tree Property

@ @@

Y00 |

Ever growing tree property: the score of returned blockchains

eventually grows.

©CEA_List 2019

Commissariat 3 I'énergie atomique et aux énergies alternatives
CEA Tech List
Centre de Saclay — 91191 Gif-sur-Yvette Cedex

Etablissement public 3 caractére industriel et commercial — RCS Paris B 775 685 019

www-list.cea.fr

