
THE SECOND SUMMER 
SCHOOL ON PRACTICE AND 
THEORY OF DISTRIBUTED 

COMPUTING

Algorithmic basics of 
blockchains
Concurrent data structures
Distributed computability
State-machine replication and 
Paxos
Byzantine fault-tolerance

July 8-12, 2019, St Petersburg, 
Russia

https://sptdc.ru/en/



The Consensus Number of 
a Cryptocurrency

To appear at PODC 2019
Joint work with Rachid Guerraoui, Matteo Monti, Matej Pavlovic, 

and Adi Seredinschi



Bitcoin: A Peer -to-Peer  Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com

www.bitcoin.org

Abstract.  A purely  peer-to-peer  version  of  electronic  cash  would  allow online 
payments to be sent directly from one party to another without going through a 
financial institution.  Digital signatures provide part of the solution, but the main 
benefits are lost if a trusted third party is still required to prevent double-spending. 
We propose a solution to the double-spending problem using a peer-to-peer network. 
The network timestamps transactions by hashing them into an ongoing chain of 

 The only way to confirm the absence of a transaction is to 
int based model, the mint was aware of all transactions and be aware of all transactions.  In the mint based model, the mint was aware of all transactions and 

decided which arrived first.   To accomplish this without a trusted party,  transactions must be 
publicly announced [1], and we need a system for participants to agree on a single history of the 
order in which they were received.  The payee needs proof that at the time of each transaction, the order in which they were received. 

…







This talk

Cryptocurrency does not require consensus

 Consensus number of the asset transfer data 
type:
k-owned (smart contracts with k parties) – k

 Asynchronous asset transfer algorithm
1-owned:  secure broadcast
k-owned: k-consensus + secure broadcast



Consensus

Processes propose values and must agree on a 
common decision value so that the decided value 
is a proposed value of some process

Before

0

1

1

1

1

1

After



But why consensus is interesting?

Because it is universal!

 If we can solve consensus among N 
processes, then we can implement any object 
shared by N processes

 A key to implement a generic fault-tolerant 
service (replicated state machine or 
blockchain)

Is consensus necessary for a 
cryptocurrency?



What is a “cryptocurrency”?

State: 
 P - set of processes 
 A - set of accounts
 : A→2P - ownership map (single owner if A→P) 
 : A→N – balance map  ( 0 – initial balances)

Interface:
 transfer(a,b,x) – called by an owner of a, returns 

a boolean (success or failure)
 read(a) – returns the balance 

We call it asset transfer data type



Commutativity and causality
 T0: $100 from Alice to Carole
 T1: $100 from Bob to Alice 
 T2: $100 from Drake to Alice 

T0 causally depends on T1 (not enough funds otherwise)
T1 and T2 commute (T0 succeeds regardless of the order)  

Alice

Bob Drake

Carole
T0

T1 T2

T0

T1 T2

Partial order



© 2019 P. Kuznetsov

Consensus number 
An object O has consensus number k if 
 k-process consensus can be solved using registers 

and any number of copies of O but (k+1)-consensus 
cannot

(k is the maximal number of processes that can be 
synchronized using copies of O and registers)

Consensus hierarchy: 
 cons(read-write register)=1
 cons(T&S)=cons(queue)=2
 …
 cons(CAS)=∞



Consensus number of asset transfer

Single-owner: 1 
 use atomic-snapshot 

memory to exchange 
the account balance

k-owner (up to k can 
debit an account): k
 account owners use 

k-consensus to agree 
on the per-account 
order of debit 
operations 

 A single k-owned 
account solves k-
consensus



What about double-pending?
 T0: $100 from Bob to Alice
 T1: $100 from Alice  to Carole
 T2: $100 from Alice to Drake

Alice’s initial balance is 0, but it claims to both 
beneficiaries to have received money from Bob

Alice

Bob Drake

Carole
T1

T0 T2

T1

T0
T2



Asset transfer implementation

Message-passing, Byzantine failures 

 Each transfer is equipped with it causal past (a set 
of incoming transactions)

 Make sure that a faulty account holder cannot lie 
about its causal past

 Secure broadcast [Bracha, 1987, Malkhi-Reiter, 1997]

Source-order: messages by the same source are  
delivered in the same order



Modular approach: private and public

Asset transfer
Causal past tracking

Secure broadcast

broadcast deliver

Deterministic

(private)
[Malkhi-Reiter’97]

Probabilistic

(public)
[TBP]

Intuition: deliver only if 
accepted by a Byzantine 
quorum (of 2f+1)

Intuition: deliver only if 
enough sample 
members are “ready”



Performance

Performance wrt BFT-Smart:
 Throughput 1,5-6x higher
 Latency 2x lower



Take-aways

 Asset transfers do not always require total order
Source order is sufficient for consistency

(Asynchronous) secure broadcast 

 Can be generalized to (limited-scope) ”smart 
contracts”
only account owners need consensus, but still no 

global total order

 Coming: probabilistic and Sybill-tolerant secure 
broadcast can be implemented (coming)
Permissionless asset transfer



Thank you!



Implementing asset transfer 
To perform a (successful) transfer: 

 (securely) broadcast together with 
dependencies (the set of previously 
received and issued transfers) that justify it

 A delivered transfer is validated and 
accepted if:
the transfer is issued by an owner

the balance (based on declared dependencies) 
is sufficient

 every its dependency transfer is validated 
(recursively)



Broadcasting and delivering



Validating transfers

Also, extended to the “k-owner” case



Quorums for samples

Needed: a Syblil-resistant sampling 
mechanism

 Every correct node maintains a sample of 
the system with a constant expected fraction 
of faulty nodes

“Proof-of-bandwidth”: trust more to those who 
talk to you more 

Brahms: Byzantine Resilient Random Membership Sampling [Bortnikov et 
al., 2010] 



Gossip-based broadcast
 The idea: deliver once heard « enough » acks 

(e.g., a sample has confirmed)

 Analyze the probability 

 Iterative construction:
Probabilistic broadcast (validity+totality)=>

Probabilistic consistent broadcast (consistency)=>

Probabilistic secure broadcast (validity, totality, 
consistency)



-secure probabilistic broadcast

 « Erdös-Rényi » gossip: to broadcast - send m 
to every member of the sample, once received
m – deliver and send to the sample



-secure consistent broadcast

 Run -secure probabilistic broadcast of m and 
wait until enough processes in « echo
sample » deliver m 


