THE SECOND SUMMER
SCHOOL ON PRACTICE AND
THEORY OF DISTRIBUTED
COMPUTING

July 8-12, 2019, St Petersburg,
Russia

Algorithmic basics of
blockchains

Concurrent data structures
Distributed computability

State-machine replication and
L5 Uniersy of Rochester e Paxos

Byzantine fault-tolerance

Leslie Lamport Maurice Herlihy

b) Michael Scott Ittai Abraham
) Brown University Computer Science
Microsoft

Eliezer Gafni Trevor Brown Achour Mostefaoui
UCLA University of Waterloo University of Nantes

Loommeae hitps://sptdc.ru/en/

The Consensus Number of
a Cryptocurrency

To appear at PODC 2019

Joint work with Rachid Guerraoui, Matteo Monti, Matej Pavlovic,
and Adi Seredinschi

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party 1s still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.

The only way to contirm the absence of a transaction 1s to
be aware of all transactions. In the mint based model, the mint was aware of all transactions and
decided which arrived first. To accomplish this without a trusted party, transactions must be
publicly announced [1], and we need a system for participants to agree on a single history of the
order in which they were received.

Thunderella: Blockchains with Optimistic

Enhancing Bitcoin Security and Performance with

Strong Consistency via Collective Signing Instant Confirmation
%
Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, d};@ 2
Ismail Khoffi, Linus Gasser, and Bryan Ford 2 % ‘o
EPFL 2,270 <L
Hyperledger Fabric: A Distributed Operating System for O/,f\%fcéo %
Permissioned Blockchains 'V%_ayo‘:?/[/ o)
>
Elli Androulaki Christian Cachin Christopher Ferris @ 4 @ 00
Artem Barger Konstantinos Christidis Gennady Laventman Q, @ ll;? C)O
Vita Bortnikov Angelo De Caro Yacov Manevich K > /I/ O % @ 6,
IBM David Enyeart IBM © Q % @ /O >
IBM - r 4
ks RIS
Srinivasan Muralidharan® Chet Murthy"* Binh Nguyen* (2 O‘ 'Oo/) (o 06 OQ)
State Street Corp. State Street Corp. ‘ee 7@ (g {f ‘_/ Q] .))
Manish Sethi Chrysoula Stathakopoulou . “e A % & {// //‘ N ?p @
Gari Singh Marko Vukolié¢ “t‘ « oS \60\1‘ @ < d}‘
Keith Smith Sharon Weed Cocco BY 1a C‘e \3\ e 4. {% fo
Alessandro Sorniotti Jason Yellick . % (e S’\C\ko 7, Q % 7 N
BM BM \\“ wy 05> % o, S (e
qcd Y ro. 2%, T % %,
. v o8V 2 % Y% %, s,
caw ¢ CF . Geot® % Ty %, 2, %,
\CAY ‘() ALK %, % %) 1L, 5
AVS o NI e v %’ %
G0 Tt 2.8 %
> 5% @ % 2
exsy AANG C
ore™® 2 g
p &a ‘pod ‘}A d&
o O e %,
7 DV &, KXY
: v/
»kﬁesb‘a%e » “, 2
- S O‘ﬂb & e’ Qfé Q 74
\—?MGSX\XQQ i fQ@J O, & s
e a2 Cos U 5,%s 4 Vo
e Line g G & 0y, Up
St\lﬁ o 5 Abrahe? o e 8, @/o
plag 9018 "8, Oé
March b ¢ Oé(g :
Hybrid Consensus: Efficient Consensus A, e Cop bl 2
. . 3y 4 74
in the Permissionless Model > 2 L2gp U 120 5
0
% o~ .
e C,s' 1]1p “
*C Vo
Rafael Pass and Elaine Shi Olllz@ lelj/

CornellTech, Cornell, Initiative for CryptoCurrency and Contracts (IC3)* @d([

! . COindeSk Blockchain101 Technology Markets Business Data & Research Consensus

ABOUT AGENDA SPEAKERS REGISTER SPONSORS SCHOLARS PoWPITCH HACKATHON COMMUNITY HOTEL FAQ @COINDESK

This talk

Cryptocurrency does not require consensus

« Consensus number of the asset transfer data
type:
v’k-owned (smart contracts with k parties) — k

= Asynchronous asset transfer algorithm
v'1-owned: secure broadcast
v'k-owned: k-consensus + secure broadcast

Consensus

Processes propose values and must agree on a
common decision value so that the decided value
IS a proposed value of some process

1 ‘ After

Before ‘ ‘

But why consensus is interesting?

Because it is universal!

« |f we can solve consensus among N
processes, then we can implement any object
shared by N processes

« A key to implement a generic fault-tolerant
service (replicated state machine or
blockchain)

Is consensus necessary for a
cryptocurrency?

What is a “cryptocurrency™?

State:

« P - set of processes

« A - set of accounts

« u: A—2P - ownership map (single owner if A—P)
= f: A—>N — balance map (f,— initial balances)

Interface:

« transfer(a,b,x) — called by an owner of a, returns
a boolean (success or failure)

» read(a) — returns the balance

We call it asset transfer data type

Commutativity and causality

= T0: $100 from Alice to Carole

= T1: $100 from Bob to Alice

= T2: $100 from Drake to Alice

TO causally depends on T1 (not enough funds otherwise)
T1 and T2 commute (TO succeeds regardless of the order)

10

Alice

Carole

B

/1 \2
ob

Drake

T0

y,

T1 12

Partial order

Consensus number

An object O has consensus number K if

» k-process consensus can be solved using registers
and any number of copies of O but (k+1)-consensus
cannot

(k is the maximal number of processes that can be
synchronized using copies of O and registers)

Consensus hierarchy:
= cons(read-write register)=1
« cons(T&S)=cons(queue)=2

« cons(CAS)=-

© 2019 P. Kuznetsov

Consensus number of asset transfer

Upon transfer(a, b, x) Single'Owner: 1
S := AS.snapshok() « use atomic-snapshot
if p ¢ y(a) v balance(a,S) < x then memory to exchange
return false the account balance

ops, := ops, U {(a,b,x)}

AS.update(ops,,)

return true k-owner (up to k can
debit an account): k

= account owners use

(o) W & & B N & R N

Upon read(a) k-consensus to agree

7S := AS.snapshot() on the per-account

s return balance(a,S) order of debit
operations

= A single k-owned
account solves k-
consensus

What about double-pending?

= TO: $100 from Bob to Alice
= T1: $100 from Alice to Carole
= T2: $100 from Alice to Drake

Alice’s initial balance is 0, but it claims to both
beneficiaries to have received money from Bob

j: T1

Alice > Carole

AN /\{\

Bob Drake

Asset transfer implementation

Message-passing, Byzantine failures

Each transfer is equipped with it causal past (a set
of incoming transactions)

Make sure that a faulty account holder cannot lie
about its causal past

Secure broadcast [Bracha, 1987, Malkhi-Reiter, 1997]

v’ Source-order: messages by the same source are
delivered in the same order

Modular approach: private and public

Asset transfer
Causal past tracking

broadcast l T deliver

Secure broadcast

Deterministic Probabilistic
(private) (public)
[Malkhi-Reiter'97] [TBP]
Intuition: deliver only if Intuition: deliver only if
accepted by a Byzantine enough sample

quorum (of 2f+1) members are “ready

Latency (ms)

Peak throu

(

Performance

14000 x Consensus-based system (BFT-Smart) throughput o
12000 \x Broadcast-based system (Aps) throughput —x—
10000 © -
8000 \\\\\%*
6000 o X —f
i
4000 © B S +
X

2000 ©emmeeas o- o X X X

0 O O © I O Q-------- o O E—— [oEE (o o)

T e % ¥ % % B OB D % % B % % B % 3
System size (number of replicas in the system)
N =100

Consensus (average) —=—
Consensus (95 %ile) <
Broadcast (average) —o—
Broadcast (95 %ile)

— A

Performance wrt BFT-Smart:
= Throughput 1,5-6x higher
= Latency 2x lower

700
Throughput (payments/sec)

Take-aways

« Asset transfers do not always require total order
v'Source order is sufficient for consistency
v'(Asynchronous) secure broadcast

« Can be generalized to (limited-scope) "smart

contracts”

v'only account owners need consensus, but still no
global total order

« Coming: probabilistic and Sybill-tolerant secure
broadcast can be implemented (coming)

v'Permissionless asset transfer

»
& “ . .
.
i, e
i < .y
o O 2 - "-
" c‘[‘- - ‘ "- o .
¢ d 1/ L
e &‘é 27 44
. o &« 5 4

CRYPTOCURRENCIES

Thank you!

Implementing asset transfer

To perform a (successful) transfer:

» (securely) broadcast together with
dependencies (the set of previously
received and issued transfers) that justify it

« A delivered transfer is validated and
accepted if:
v'the transfer is issued by an owner

v'the balance (based on declared dependencies)
is sufficient

v' every its dependency transfer is validated
(recursively)

Broadcasting and delivering

9 operation transfer(a, b, x) where a = p
10 if balance(a, hist[p] U deps) < x then

11 return false
12 broadcast([(a, b, x, seq[p] + 1), deps])
13 deps:= ()

{ Secure broadcast callback }

16 upon deliver(q, m) { Executed when p delivers message m from process q }
17 let mbe[(q,d,y,s), h]

18 if s = rec|q] + 1 then

19 rec|q] := rec[q] + 1

20 toValidate := toValidate U {(q, m)}

Validating transfers

21 upon (q, |2, h|) € toValidate N Valid(q,t, h) { Executed when a transfer delivered from q becomes v
22 hist[q] := hist[q] U h U {t} { Update the history for the outgoing account }

23 let t be (c,d, y,s)

24 seq(q] :=s

25 if d = p then

26 deps := deps U {(c,d, y,s)} { This transfer is incoming to account of local process p }

27 if ¢ = p then

28 return true { This transfer is outgoing from account of local process p }

20 function Valid(q, t, h)
30 lettbe(c,d,y,s)
31 return (q = ¢)

32 and (s = seq[q] + 1)
33 and (V(a,b,x,r) € h: (a,b,x,r) € hist[a])
34 and (balance(c, hist[q] U h) > y)

Also, extended to the “k-owner” case

Quorums for samples

Needed: a Syblil-resistant sampling
mechanism

« Every correct node maintains a sample of
the system with a constant expected fraction
of faulty nodes

“Proof-of-bandwidth”: trust more to those who
talk to you more

Brahms: Byzantine Resilient Random Membership Sampling [Bortnikov et
al., 2010]

Gossip-based broadcast

= The idea: deliver once heard « enough » acks
(e.g., a sample has confirmed)

= Analyze the probability

= |terative construction:
v'Probabilistic broadcast (validity+totality)=>
v'Probabilistic consistent broadcast (consistency)=>

v'Probabilistic secure broadcast (validity, totality,
consistency)

g-secure probabilistic broadcast

For any €€ [0,1], we say that probabilistic broadcast is e-secure if:
1. No duplication: No correct process delivers more than one message.

2. Integrity: If a correct process delivers a message m, and o is correct, then m was previously
broadcast by o.

3. e-Validity: If o is correct, and o broadcasts a message m, then o eventually delivers m with
probability at least (1—¢).

4. e-Totality: If a correct process delivers a message, then every correct process eventually delivers
a message with probability at least (1—e).

« « Erdos-Renyi » gossip: to broadcast - send m
to every member of the sample, once received
m — deliver and send to the sample

c-secure consistent broadcast

For any e€[0,1], we say that probabilistic consistent broadcast is e-secure if:

1.
2.

No duplication: No correct process delivers more than one message.

Integrity: If a correct process delivers a message m, and o is correct, then m was previously
broadcast by o.

e-Total validity: If o is correct, and o broadcasts a message m, every correct process eventually
delivers m with probability at least (1—e¢).

e-Consistency: Every correct process that delivers a message delivers the same message with
probability at least (1—e).

Run p-secure probabilistic broadcast of m and
wait until enough processes in « echo
sample » deliver m

