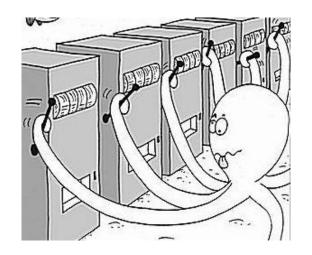


Multi-Armed Bandits: Bayesian vs. Frequentist

Lorenzo Maggi Nokia Bell Labs

Basic scenario

- *K* "arms"
- Arm a = r.v. with distribution v_a and mean μ_a
- ν_a and μ_a are unknown
- test the arms by obtaining *i.i.d.* samples $\sim \nu_a$, $\forall a$
- goal: maximize the sum of rewards (quickly identify $a^* = \operatorname{argmax}_a \mu_a$)



Exploration/exploitation dilemma

- *K* "arms"
- Arm a = r.v. with distribution v_a and mean μ_a
- v_a and μ_a are unknown
- goal: maximize the sum of rewards ($a^* = \operatorname{argmax}_a \mu_a$)
- How? "test" the arms by obtaining i.i.d. samples $\sim v_a$, $\forall a$
- At time t we have sampled arms and built estimates $\hat{\mu}_{a,t} \approx \mu_a$, $\forall a$

• Dilemma:

- (exploitation) settle for our current estimates and greedily choose what seems to be the best arm $(\hat{a}_t = \operatorname{argmax}_a \hat{\mu}_{a,t})$
- (exploration) keep sampling the "bad" arms to make sure they're really bad

A simple example

- Arm 1: fixed reward $Y_{1,t}$ = 0.25 $\rightarrow \nu_1 = \delta_{0.25}$, $\mu_1 = 0.25$
- Arm 2: $Y_{2,t} = \begin{cases} 0 & w. p. 0.3 \\ 1 & w. p. 0.7 \end{cases} \rightarrow \mu_2 = 0.7$
- Oracle policy: always pick arm 2 → unbeatable but not implementable
- **Greedy policy**: choose the arm with highest estimated avg. reward \rightarrow with probability 0.3, we choose the bad arm **forever**! (linear regret)
 - (exploration) time 1: arm 1, reward 0.25 $\rightarrow \hat{\mu}_1 = .25$
 - (exploration) time 2: arm 2, reward 0 w.p. 0.3 $\rightarrow \hat{\mu}_2 = 0$
 - (exploitation) time 3: greedily choose arm 1 $\rightarrow \hat{\mu}_1 = .25$
 - (exploitation) time 3: greedily choose arm 1 $\rightarrow \hat{\mu}_1 = .25$
 - ... forever and ever...
- What else...?

Applications

- Clinical trials (which drug should the doctor prescribe?)
- Rate control (at which rate r_i should the BS transmit to user i to maximize throughput $r_i\theta_i$, where θ_i =probability of correct reception)
- Advertising (which ad should the banner display to maximize the revenue?)

... and beyond (restless bandits, not covered here):

- Channel selection in wireless
- Shortest path routing
- Queue control

(formal) goal:

Regret minimization

Rewards have always the same distribution, that is unknown

Rewards are distributed according to our belief, that changes over time

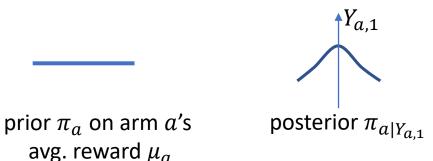
Frequentist model	Bayesian model
μ_1 ,, μ_K unknown parameters (arm exp. values)	μ_1 ,, μ_K drawn from a prior distribution: $\mu_a \sim \pi_a$
Reward arm a : $(Y_{a,t})_t \sim^{i.i.d.} v^{\mu_a}$	Reward arm a : $(Y_{a,t})_t \mu \sim^{i.i.d.} v^{\mu_a}$
	$(Y_{a,t})_t$ are not <i>i.i.d.</i> since our belief π_a is updated as:
	• $Y_{a,1} \sim v^{\mu_a}$, $\mu_a \sim \pi_a$
	• $Y_{a,2} \sim \nu^{\mu'_a}$, $\mu'_a \sim \pi'_a = \frac{\Pr(Y_{a,1} \mu_a)\pi_a}{\Pr(Y_{a,1})}$
	•

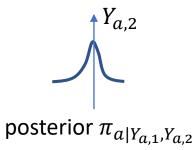
Regret of algorithm \mathcal{A} (choosing arm A_t at time t)

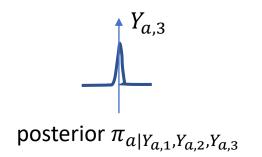
$$R_T(\mathcal{A}, \pmb{\mu}) = \mathbb{E}\left[\sum_{1 \leq t \leq T} (\mu^* - Y_{A_t, t})
ight]$$
 $\mathcal{R}_T(\mathcal{A}) = \int R_T(\mathcal{A}, \pmb{\mu}) d\pi(\pmb{\mu})$ "Good" algorithm = Optimal algorithm = sublinear regret for all (unknown) $\pmb{\mu}$ minimum Bayesian regret given prior π

Belief update

on the "goodness" of arms







Prior
$$\pi_a(.) = \Pr(\mu_a = .)$$

Posterior $\pi_{a|Y}(.) = \Pr(\mu_a = . | Y) = \frac{\Pr(Y | \mu_a = .)\pi_a(.)}{\Pr(Y)}$

Main intuition: the way we sample the arms has an impact on

- the reward we collect
- the belief we have about the goodness of the arms (only the sampled arms are observed!)

Bayesian or Frequentist?

You can update your belief in both cases (no one forbids you!) **but**: subtle difference...

- <u>Bayesian</u>: the *belief* defines your regret (see next)
- Frequentist: the reward defines the regret, the belief is just a tool to take better decisions

Bayesian model

Bayesian model

Simpler (but important) case:

```
• Reward of arm a is Bernoulli(\mu_a): \Pr(Y_a|\mu_a) = \begin{cases} 1 & w. p. \mu_a \\ 0 & w. p. (1 - \mu_a) \end{cases}
```

- Prior on μ_a : $\pi_a = \text{Beta}(n, m)$
 - ⇒ draw $Y = \{0,1\}$ posterior is also Beta (conjugate prior!): $\pi_{a|Y} = \text{Beta}(n + Y, m + (1 - Y))$

Goal: max discounted reward = $\mathbb{E}[\sum_t \beta^t Y_{A_t,t}|$ belief at time t]

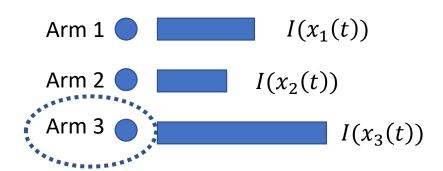
Equivalently, solve the following MDP:

- state: belief $\{(n_a, m_a)\}_a = \{(\#1's, \#0's, \text{ for arm } a)\}_{\text{arm } a} \longleftrightarrow \text{ current belief } \pi_{a|Y}$
- action: arm A that you pick
- expected reward (given state and action): $\frac{n_A}{n_A+m_A}$

• state transitions to
$$\begin{cases} \{(n_A+1,m_A) \cup \{n_a,m_a\}_{a\neq A}\}, \ w. \ p. \ \frac{n_A}{n_A+m_A} \\ \{(n_A,m_A+1) \cup \{n_a,m_a\}_{a\neq A}\}, \ w. \ p. \ 1 - \frac{n_A}{n_A+m_A} \end{cases}$$

Index policy

- Solving an MDP is conceptually easy ("just" solve an LP)
- BUT: curse of dimensionality, the # of states generally explodes!
 - \rightarrow look for an index policy $I: \mathcal{S} \rightarrow \mathbb{R}$ such that:
 - (optimality) playing arm with highest index is optimal
 - (decoupling) computing $I(x_a)$ is "easy" since it only depends on arm a



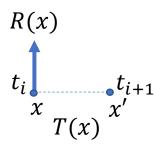
Let's prove the optimality of Gittins index

Semi-Markov Decision Process

- Each arm a is a semi-Markov process with finite state space \mathcal{S}_a
- Arm a is in state $x_a \in S_a$ and it is *played*. Then,
 - a random reward $R(x_a)$ is received
 - the arm remains "active" over a random time period $T(x_a)$
 - after time $T(x_a)$, the arm moves to a random new state $x_a{}^\prime$

$$\mathbb{E}\left[\sum_{i} R_{i} e^{-\beta t_{i}}\right]$$

- Equivalent "constant-rate" formulation:
 - reward is received at constant rate $r(x_a) = \frac{\mathbb{E}[R(x_a)]}{\mathbb{E}[\int_{t=0}^{T(x_a)} e^{-\beta t} dt]}$
 - and we maximize: $\mathbb{E}[\int_t r(x(t))e^{-\beta t}dt]$



$$r(x)$$
 x
 $T(x)$

Gittins index policy

- Remember: we seek for the policy that samples the arms so as to maximize $\mathbb{E}[\int_t r(x(t))e^{-\beta t}dt]$
- Let $x^* = \operatorname{argmax}_{x} r(x)$. Let a^* be the "lucky" arm: $x^* \in \mathcal{S}_{a^*}$
- (auxiliary and intuitive) **Lemma**: \exists an optimal policy the obeys the rule: If the lucky arm a^* is in state x^* , then play it!

 Proof by contradiction (see [1])

Theorem: The (Gittins) index policy computed as follows is optimal:

$$I(x_a) = \sup_{\tau > 0} \frac{\mathbb{E} \int_{t=0}^{\tau} r(t)e^{-\beta t}dt}{\mathbb{E} \int_{t=0}^{\tau} e^{-\beta t}dt} | x(0) = x_a, \quad \tau \text{ stopping time}$$

Proof: see next and [1]

Maximum achievable reward rate [rew/sec] from state x_a

[1] Tsitsiklis, J. N. (1994). A short proof of the Gittins index theorem. *The Annals of Applied Probability*, 194-199.

[2] J. C. Gittins, Bandit Processes and Dynamic Allocation Indices, Journal of the Royal Statistical Society (1979)

Gittins index policy

sketch of the proof in [1] Tsitsiklis, J. N. (1994). A short proof of the Gittins index theorem. The Annals of Applied Probability, 194-199.

- Prove by induction on the # states N that \exists **an** optimal index policy
- For N=1, it is trivially true (just one bandit, always sample it)
- Assume that index policy is optimal for N=M, show it for N=M+1
- **Reduce** arm a^* by removing best state $x^* = \operatorname{argmax}_x r(x)$:
 - Assume the arm a^* is in state $x_a \neq x^*$
 - Modify reward $\hat{r}(x_a)$ and dwelling time $\hat{T}(x_a)$ by accounting for the fact that when arm a^* in state $x^* = \operatorname{argmax}_x r(x)$ then we **must** play it (see before)
 - $\hat{T}(x_a) = \text{first time at which state of arm } a^* \text{ is different from } x_a \text{ and } x^*$

•
$$\hat{r}(x_a) = \frac{\mathbb{E}\int_{t=0}^{\hat{T}(x_a)} r(t)e^{-\beta t}dt}{\mathbb{E}\int_{t=0}^{\hat{T}(x_a)} e^{-\beta t}dt}$$

Play arm a^* ...



Gittins index policy (cont'd) sketch of the proof [1]

- After the reduction, state x^* has disappeared from \mathcal{S}_{a^*}
- We end up with a MAB with N=M states
- By induction hypothesis, \exists an optimal index policy for M states!
 - → We proved that
 - ∃ an optimal index policy
 - by construction, the optimal index I(x) is as follows:
 - (a) Set $I(x^*) = r(x^*) := \max_x r(x)$. Let a^* be the corresponding arm
 - (b) If set of states $|S_{a^*}| = 1$, then remove arm a^*
 - (c) Else, reduce arm a^* by removing state x^* and go to (a)
 - the index of state x_a only depends on arm a (curse of dimensionality is broken!) Complexity is linear in the # arms: $O(\Sigma_a |S_a|^2)$

Gittins index

Further intuitions

- $I(x_a) = \sup_{\tau>0} \frac{\mathbb{E} \int_{t=0}^{\tau} r(t)e^{-\beta t}dt}{\mathbb{E} \int_{t=0}^{\tau} e^{-\beta t}dt} | x(0) = x_a, \tau \text{ stopping time}$ = highest avg. reward rate (reward/second) achievable from state x_a
- Further intuition: Imagine you have 2 arms: $\begin{cases} & \text{arm 1: arm } a \\ & \text{arm 2: constant reward } \nu \end{cases}$
- Optimal policy: sample arm a until a stopping time τ , then sample arm 2 forever (easy, by contradiction)

 Optimal reward: $\sup_{\tau \geq 0} \{\mathbb{E} \int_{t=0}^{\tau} r(t) e^{-\beta t} dt + \mathbb{E} \int_{t=\tau}^{\infty} v e^{-\beta t} dt \}$
- P2 Sampling arm 2 forever gives reward: $\int_{t=0}^{\infty} v e^{-\beta t} dt$
 - $\begin{aligned} \sup\{\nu: \mathbf{P1} \text{ better than } \mathbf{P2}\} &= \sup_{\nu} \left\{ \sup_{\tau>0} \{ \int_{t=0}^{\tau} r(t) e^{-\beta t} dt + \mathbb{E} \int_{t=\tau}^{\infty} \nu \ e^{-\beta t} \ dt \} > \mathbb{E} \int_{t=0}^{\infty} \nu \ e^{-\beta t} \ dt \right\} \\ &= \sup_{\nu} \left\{ \sup_{\tau>0} \{ \int_{t=0}^{\tau} r(t) e^{-\beta t} dt > \nu \ \mathbb{E} \int_{t=0}^{\tau} e^{-\beta t} \ dt \} \right\} \\ &= \sup_{\tau>0} \left\{ \sup_{\nu} \frac{\mathbb{E} \int_{t=0}^{\tau} r(t) e^{-\beta t} dt}{\mathbb{E} \int_{t=0}^{\tau} e^{-\beta t} dt} > \nu \right\} = \sup_{\tau\geq0} \left\{ \frac{\mathbb{E} \int_{t=0}^{\tau} r(t) e^{-\beta t} dt}{\mathbb{E} \int_{t=0}^{\tau} e^{-\beta t} dt} \right\} \end{aligned}$

Frequentist model

Frequentist model

- K arms
- Arm a has expected reward μ_a
- Main differences w.r.t. Bayesian model:
 - Regret must be low w.r.t. **any** value of $\{\mu_a\}_a$: arm a is sampled $\min_{\mathbf{A}\in\mathcal{A}}R_{\mathcal{A}}(T)=\mathbb{E}\big[\Sigma_{t=1}^T(\mu^*-Y_{A_t,t})\big]=\Sigma_a\,(\mu^*-\mu_a)\mathbb{E}[n_{a,T}]$ up to time T

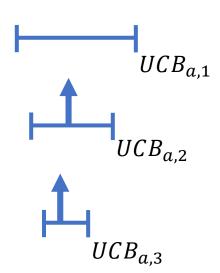
times suboptimal

- Regret does **not** depend on the a priori distribution π_a on μ_a
- Tools: MDPs are no longer useful. Plenty of concentration inequalities instead
- Beware: we may still have a prior $\pi_a!$ No one forbids us...

A famous frequentist algorithm:

Upper Confidence Bound (UCB)

- While sampling arms, compute the **confidence interval** of the expected reward μ_a , for all arms a and take its **upper bound UCB**
- Always choose the arm with the highest UCB
- Intuition: high UCB <-> high expected reward and/or seldom sampled



 $n_{a,t} = \#$ times arm a is sampled up to time t $\hat{\mu}_{a,t} = \text{sampled mean of arm } a$ up to time t

UCB Algorithm:

- 1. At round t = 1, ..., K sample arm t
- 2. At round t > K
 - compute $UCB_{a,t-1} = \hat{\mu}_{a,t-1} + \sqrt{\ln t 1/n_{a,t-1}}$
 - sample arm $A_t = \operatorname{argmax}_a \operatorname{UCB}_{a,t-1}$

Recall: Chernoff bound

$$\Pr(|\hat{\mu}_{a,t} - \mu_a| > \delta) \le 2e^{-2n_{a,t}\delta^2}$$

- Use $\delta = \sqrt{\ln t / n_{a,t}}$:
 - $|\hat{\mu}_{a,t} \mu_a| > \sqrt{\ln t / n_{a,t}}$ with probability $\geq 1 2t^{-2}$
- (*) (UCB is an upper bound w.h.p.) $UCB_{a,t} \ge \mu_a$ w.p. $\ge 1 2t^{-2}$
- (**) $(\hat{\mu}_{a,t} \approx \mu_a) \hat{\mu}_{a,t} < \mu_a + \frac{\mu^* \mu_a}{2}$ with # samples $n_{a,t} \ge \frac{4 \ln t}{(\mu^* \mu_a)^2}$ w.p. $\ge 1 2t^{-2}$

Lemma: If at any time t the suboptimal arm a has been played $n_{a,t} \ge \frac{4 \ln t}{(\mu^* - \mu_a)^2}$ times, then $\Pr(A_t = a) \le 4t^{-2}$.

the more you sampled a suboptimal arm in the past,

the less you'll do in the future...

Proof: Show that $UCB_{a,t} \leq UCB_{a^*,t}$ w.h.p.:

$$\begin{split} \text{UCB}_{a,t} &= \hat{\mu}_{a,t} + \sqrt{\ln t \, / n_{a,t}} \\ &\leq \hat{\mu}_{a,t} + (\mu^* - \mu_a) / 2 \qquad \text{since } n_{a,t} \geq \frac{4 \ln t}{(\mu^* - \mu_a)^2} \\ &\leq \left(\mu_a + \frac{(\mu^* - \mu_a)}{2} \right) + \frac{(\mu^* - \mu_a)}{2} \qquad \text{w.p.} \geq 1 - 2t^{-2}, \text{ see (**)} \\ &= \mu^* \\ &\leq \text{UCB}_{a^*,t} \qquad \text{w.p.} \geq 1 - 2t^{-2}, \text{ see (**)} \\ & \Rightarrow \Pr(\text{UCB}_{a,t} \geq \text{UCB}_{a^*,t}) \leq 4t^{-2} \Rightarrow \Pr(A_t = a) \leq 4t^{-2} \end{split}$$

Lemma: For any suboptimal arm a ($\mu_a < \mu^*$),

$$\mathbb{E}[n_{a,t}] \le \frac{4 \ln T}{(\mu^* - \mu_a)^2} + 8$$

...and you end up sampling less and less often each suboptimal arm!

$$\begin{split} \textit{Proof} \colon \mathbb{E} \big[n_{a,t} \big] &= 1 + \mathbb{E} \, \Sigma_{t=K}^T \mathbf{1} \big(A_{t+1} = a \big) \\ &= 1 + \mathbb{E} \, \Sigma_{t=K}^T \mathbf{1} \left(A_{t+1} = a, n_{a,t} < \frac{4 \ln t}{(\mu^* - \mu_a)^2} \right) + \mathbb{E} \, \Sigma_{t=K}^T \mathbf{1} \left(A_{t+1} = a, n_{a,t} \geq \frac{4 \ln t}{(\mu^* - \mu_a)^2} \right) \\ &\leq \frac{4 \ln T}{(\mu^* - \mu_a)^2} + \Sigma_{t=K}^T \, \Pr \left(A_{t+1} = a, n_{a,t} \geq \frac{4 \ln t}{(\mu^* - \mu_a)^2} \right) \quad \textit{by contradiction} \\ &= \frac{4 \ln T}{(\mu^* - \mu_a)^2} + \Sigma_{t=K}^T \, \Pr \left(A_{t+1} = a \mid n_{a,t} \geq \frac{4 \ln t}{(\mu^* - \mu_a)^2} \right) . \Pr \left(n_{a,t} \geq \frac{4 \ln t}{(\mu^* - \mu_a)^2} \right) \\ &\leq \frac{4 \ln T}{(\mu^* - \mu_a)^2} + \Sigma_{t=K}^T 4 t^{-2} \quad \textit{by previous slide and } \Pr \leq 1 \\ &\leq \frac{4 \ln T}{(\mu^* - \mu_a)^2} + 8 \end{split}$$

Remark: the regret holds for any values of μ ! (cfr. Bayesian)

Theorem: The regret of UCB algorithm is bounded by:

$$R_T(\text{UCB}) = \mathbb{E}\left[\Sigma_{t=1}^T(\mu^* - Y_{A_t,t})\right] \le \Sigma_{a \ne a^*} \frac{4 \ln T}{(\mu^* - \mu_a)} + 8(\mu^* - \mu_a)$$

Proof:
$$\mathbb{E}\left[\Sigma_{t=1}^{T}(\mu^* - Y_{A_t,t})\right] = \Sigma_{a \neq a^*} (\mu^* - \mu_a) \mathbb{E}\left[n_{a,T}\right]$$

$$\leq \Sigma_{a \neq a^*} (\mu^* - \mu_a) \left(\frac{4 \ln T}{(\mu^* - \mu_a)^2} + 8\right)$$

$$= \Sigma_{a \neq a^*} \frac{4 \ln T}{(\mu^* - \mu_a)} + 8(\mu^* - \mu_a)$$

and finally...

How "good" is a frequentist MAB algorithm?

Theorem [2]: For any algorithm
$$\mathcal{A}$$
,
$$\lim_{T}\inf\frac{R_{T}(\mathcal{A})}{\log T}\geq \Sigma_{a\neq a^{*}}\frac{\mu_{a}^{*}-\mu_{a}}{D_{KL}(\nu_{a},\nu_{a^{*}})}$$

where $D_{KL}(\nu_a, \nu_{a^*}) = \int \nu_a \log \frac{\nu_a}{\nu_{a^*}}$ measures the "distance" between distributions ν_a and ν_{a^*}

[3] Lai, T.L.; Robbins, H. (1985). "Asymptotically efficient adaptive allocation rules". *Advances in Applied Mathematics*. **6** (1): 4–22.

Some more references

- Cesa-Bianchi, N., & Lugosi, G. (2006). *Prediction, learning, and games*. Cambridge university press.
- Auer, P.; Cesa-Bianchi, N.; Fischer, P. (2002). "Finite-time Analysis of the Multiarmed Bandit Problem". Machine Learning. 47 (2/3): 235–256.
- Gittins, J. C. (1989), Multi-armed bandit allocation indices, Wiley-Interscience Series in Systems and Optimization., Chichester: John Wiley & Sons, Ltd
- T. Lattimore and C. Szepesvari, "Bandit Algorithms". Available at http://downloads.tor-lattimore.com/book.pdf

