

Tournament solutions François Durand

Lincs Reading Group Network Theory

March 27, 2024

Introduction

A club of tennis players.

All of them played **once** against one another.

Question: who are the "best" players?

Applications:

- Sports,
- Voting and aggregation of preferences,
- Individual non-transitive preference (psychology, marketing),
- Multicriteria decision (economics, social choice).

References

- Laslier, Jean-François. Tournament solutions and majority voting. Springer, 1997.
- Brandt, Felix, Markus Brill and Paul Harrenstein. Tournament Solution. In: Brandt, Felix, Vincent Conitzer, Ulle Endriss, et al (ed.). Handbook of computational social choice. Cambridge University Press, 2016.

Plan

Basic notions

Miscellaneous solutions

"Game-theory" solutions

Conclusion

Tournament solutions

March 27, 2024- 4

Basic notions

Plan

Basic notions

Miscellaneous solutions

"Game-theory" solutions

Conclusion

Tournament solutions

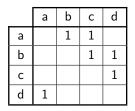
March 27, 2024- 5

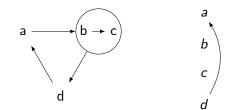
Basic notions

Tournament

A tournament T is given by:

- A (finite) list of candidates,
- ► A complete, antisymmetric and irreflexive relation on them.

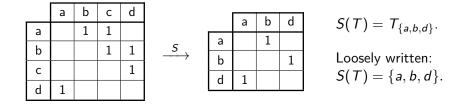




Tournament solution

A tournament solution S is a function whose input is a tournament and output is a non-empty subtournament. Requirements:

- Neutral (respects symmetries),
- Selects only the Condorcet winner when there is one.

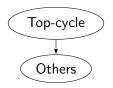


Remark: all tournament solutions give the same output when there are 1, 2 or 3 candidates.

Basic notions

A solution: the Top-Cycle *TC*

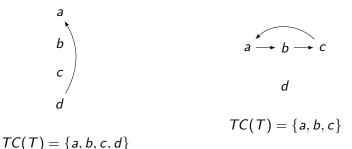
The *top-cycle* TC(T) is the smallest subset A of candidates such that any member of A defeats any member outside A.



The top-cycle:

- Is neutral,
- Selects only the Condorcet winner when there is one.
- \Rightarrow It is a tournament solution.

Top-Cycle: examples



Usually, the top-cycle is quite "big". All tournament solutions that we will study are included in the top-cycle.

Monotonicity

A solution is *monotonous* iff, whenever a winner is reinforced, it does not become a loser.

Let T where x is a winner. Let T' the same as T, except for one match, which was a defeat for x in T and is a victory for x in T'. Then x must be a winner in T'.

Sum-up of properties

Monotone

Basic notions

Independence of the (matches between) losers

A solution is *independent of the losers* iff changing the result of a match between two losers never changes the set of winners.

Let T where x and y are losers. Let T' the same as T, except for the match between x and y. Then S(T) = S(T').

In other words: the set of winners depend only on the matches between two winners and the matches between a winner and a loser.

Sum-up of properties

Monotone

Indep. of losers

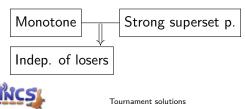
Basic notions

Strong Superset Property (SSP)

A solution satisfies the *Strong Superset Property* iff one does not change the set of winners by deleting some or all of the losers.

If x is a loser, then S(T - x) = S(T).

If S is monotonous and verifies SSP, then S is independent of the losers.

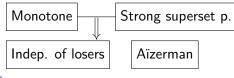


Aïzerman Property

A solution satisfies Aïzerman property iff when x is a loser, we have $S(T - x) \subseteq S(T)$.

Remark: later, we will see an example giving an intuitive justification of this property.

Clearly weaker than SSP, which requires S(T - x) = S(T).

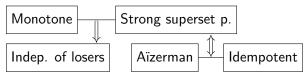


Idempotency

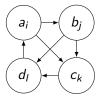
A solution S is *idempotent* iff $S \circ S = S$.

In other words: S(T - all losers) = S(T).

SSP is equivalent to the conjonction of Aïzerman property and idempotency.



Composition-Consistency

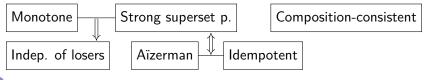


This tournament T is "decomposable":

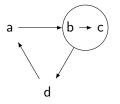
 A great tournament T' between projects a, b, c and d;

Subtournaments T_a between variants a_i , etc.

Composition-consistency: for example, if $S(T') = \{a, b\}$, then we should have $S(T) = S(T_a) \cup S(T_b)$.

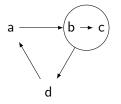


The Top-Cycle is not composition-consistent



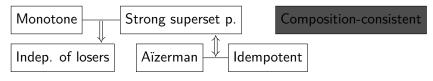
Winner of $\{b, c\}$: *b*. Winners of a 3-cycle: all candidates. If composition-consistent, TC(T) should be $\{a, b, d\}$: not true!

The Top-Cycle is not composition-consistent



Winner of $\{b, c\}$: *b*. Winners of a 3-cycle: all candidates. If composition-consistent, TC(T) should be $\{a, b, d\}$: not true!

Properties of the Top-Cycle *TC*



Comparison of solutions

One goal: select "few" candidates.

When comparing two solutions S and S', we may have the following relation.

▶
$$S \subseteq S'$$
 means $\forall T, S(T) \subseteq S'(T)$ (S is *finer* that S).

Ideally, we would like a solution with good properties and that is as fine as possible.

Plan

Basic notions

Miscellaneous solutions

"Game-theory" solutions

Conclusion

Tournament solutions

March 27, 2024- 18

Copeland solution C

Winners: candidates with most victories.

	a b c d		Copeland score			
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	

$$C(T) = \{a, b\}.$$

Copeland solution C

Winners: candidates with most victories.

a b		b	с	d	Copeland score	
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	

$$C(T) = \{a, b\}.$$

A justifying model:

- There is a "true" relation of strength between candidates.
- In this true relation, there is a Condorcet winner (but the relation between other candidates may not be transitive).
- Each match is an independent observation: we get a false result with probability p < ¹/₂.

Then Copeland winners are the maximum likelihood solutions.

Copeland solution: properties

	a b c d Copeland		Copeland score			
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	

$$C(T) = \{a, b\}.$$

Copeland solution: properties

a b c d Cope		Copeland score				
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	

$$C(T) = \{a, b\}.$$

Copeland solution is monotone (obviously).

a b c d Co		Copeland score				
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	

$$C(T) = \{a, b\}.$$

Copeland solution is monotone (obviously).

- If d defeated c, then we would have $C(T') = \{a, b, d\}$.
- \Rightarrow Not independent of losers.

a b c d Co		Copeland score				
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	

$$C(T) = \{a, b\}.$$

Copeland solution is monotone (obviously).

If d defeated c, then we would have $C(T') = \{a, b, d\}$. \Rightarrow Not independent of losers.

$$C(T - c) = \{a, b, d\}.$$

$$\Rightarrow \text{Not SSP (should} = C(T)).$$

$$\Rightarrow \text{Not even Aïzerman (should} \subseteq C(T))$$

a b c d		Copeland score				
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	

$$C(T) = \{a, b\}.$$

Copeland solution is monotone (obviously).

If d defeated c, then we would have $C(T') = \{a, b, d\}$. \Rightarrow Not independent of losers.

 $C(T - c) = \{a, b, d\}.$ $\Rightarrow \text{ Not SSP (should = C(T)).}$ $\Rightarrow \text{ Not even Aïzerman (should \subseteq C(T)).}$ $C(C(T)) = \{a\}.$ $\Rightarrow \text{ Not idempotent.}$

а

С

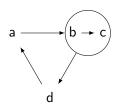
b→

d

Copeland solution: properties

	a b c d Copeland s		Copeland score			
а		1	1	2		
b			1	1	2	
с				1	1	
d	1				1	

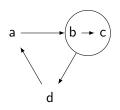
	а	a b c d Copeland scor		Copeland score		
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	



Winner of $\{b, c\}$: *b*. Winners of a 3-cycle: all candidates.

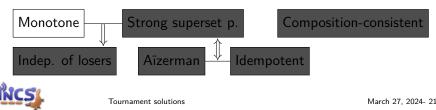
If composition-consistent, C(T) should be $\{a, b, d\}$: not true!

	a b c d Copeland s		Copeland score			
а		1	1		2	
b			1	1	2	
с				1	1	
d	1				1	



Winner of $\{b, c\}$: b. Winners of a 3-cycle: all candidates. If composition-consistent, C(T) should be $\{a, b, d\}$: not true!

Properties of Copeland solution



Slater solution SI

Model:

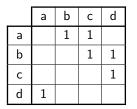
- ▶ There is a "true" relation of strength between candidates.
- This true relation is **transitive** (total order).
- Each match is an independent observation: we get a false result with probability p < ¹/₂.

Find all orders that maximize the likelihood. I.e.: find all permutations that minimize the numbers of 1's under the main diagonal of the matrix.

A Slater winner is the top element of such an order.

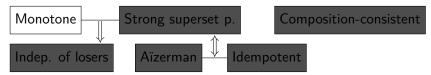
Slater solution: example and properties

Example



Only suitable order: a, b, c, d. $\Rightarrow Sl(T) = \{a\}.$

Properties of Slater solution



Markov solution *M*: "Ping-pong winners"

Model:

- Start with a candidate at random.
- Choose an opponent at random and keep the winner.
- Choose a new opponent and so on...

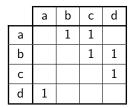
Noting C the diagonal matrix of Copeland scores:

$$\mathbf{p}_{t+1} = \frac{1}{m-1}(T+C)\mathbf{p}_t,$$

Markov winners: candidates who have a maximal probability after infinite time.

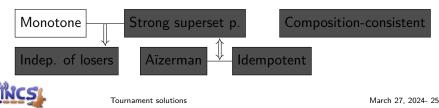
Markov solution: example and properties

Example



$$\mathbf{p}_{\infty} = \frac{1}{3} \begin{pmatrix} 2 & 1 & 1 \\ & 2 & 1 & 1 \\ & & 1 & 1 \\ 1 & & & 1 \end{pmatrix} \mathbf{p}_{\infty}.$$
$$\Rightarrow \mathbf{p}_{\infty} = (0.4, 0.3, 0.1, 0.2).$$
$$\Rightarrow M(T) = \{a\}.$$

Properties of Markov solution



"Game-theory" solutions

Plan

Basic notions

Miscellaneous solutions

"Game-theory" solutions

Conclusion

Tournament solutions

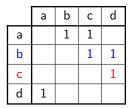
March 27, 2024- 26

"Game-theory" solutions

Uncovered set UC

A candidate x covers another candidate y iff x does better than y in any match: for all z, $T_{xz} \ge T_{yz}$. In particular, x must defeat y.

y is *uncovered* iff no x covers y.



c is covered by *b*.

Other candidates are uncovered.

$$\Rightarrow UC(T) = \{a, b, d\}.$$

"Game-theory" solutions

Uncovered set: link with a 2-player game

Symmetric 2-player zero-sum game: matrix $T - T^t$.

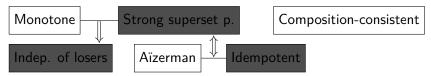
	а	b	с	d
а		1	1	-1
b	-1		1	1
с	-1	-1		1
d	1	-1	-1	

 $Covered \ candidate = dominated \ strategy \ in \ this \ game.$

Uncovered set = set of undominated strategies in this game.

Uncovered set: properties

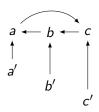
Properties of Uncovered set



Main problem: not idempotent! So...

Iterated uncovered set UC^{∞}

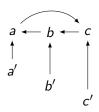
Let us go on removing covered candidates...



	а	b	с	a'	b'	с′
а			1		1	1
b	1			1		1
с		1		1	1	
a'	1				1	1
b'		1				1
с′			1			

Iterated uncovered set UC^{∞}

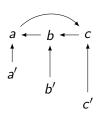
Let us go on removing covered candidates...



	а	b	С	a'	b'	с′
а			1		1	1
b	1			1		1
с		1		1	1	
a'	1				1	1
b'		1				1
<i>c</i> ′			1			

Iterated uncovered set UC^{∞}

Let us go on removing covered candidates...

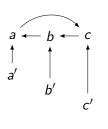


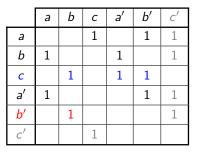
	а	b	с	a'	b'	С′
а			1		1	1
b	1			1		1
с		1		1	1	
a'	1				1	1
b'		1				1
С′			1			

 $UC(T) = \{a, b, c, a', b'\}.$

Iterated uncovered set UC^{∞}

Let us go on removing covered candidates...



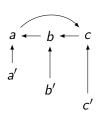


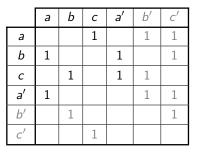
$$UC(T) = \{a, b, c, a', b'\}.$$

Note the example of Aïzerman property not SSP.

Iterated uncovered set UC^{∞}

Let us go on removing covered candidates...





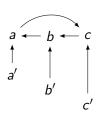
$$UC(T) = \{a, b, c, a', b'\}.$$

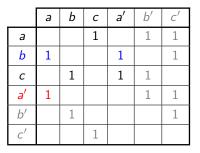
Note the example of Aïzerman property not SSP.

$$UC^{2}(T) = \{a, b, c, a'\}.$$

Iterated uncovered set UC^{∞}

Let us go on removing covered candidates...





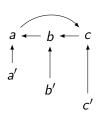
$$UC(T) = \{a, b, c, a', b'\}.$$

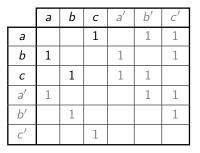
Note the example of Aïzerman property not SSP.

$$UC^{2}(T) = \{a, b, c, a'\}.$$

Iterated uncovered set UC^{∞}

Let us go on removing covered candidates...





$$UC(T) = \{a, b, c, a', b'\}.$$

Note the example of Aïzerman property not SSP.

$$UC^{2}(T) = \{a, b, c, a'\}.$$

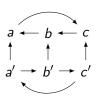
$$UC^{3}(T) = UC^{\infty}(T) = \{a, b, c\}.$$

Tournament solutions

March 27, 2024- 30

Iterated uncovered set is not monotonous!

Another example...



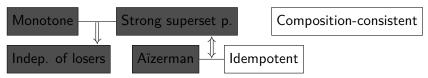
	а	b	с	a'	b′	с′
а			1		1	1
b	1			1		1
с		1		1	1	
a'	1				1	
b'		1				1
с′			1	1		

$$UC(T) = UC^{\infty}(T) = \{a, b, c, a', b', c'\}.$$

If a' defeated c', then it would be the previous example and $UC^{\infty}(T') = \{a, b, c\}$: candidate a' is not a winner! $\Rightarrow UC^{\infty}$ is not monotonous.

Iterated uncovered set: properties

Properties of Iterated uncovered set



And $UC^{\infty} \subseteq UC$ (by definition).

Minimal covering set MC

A subset A of candidates is *covering* iff when adding another candidate $x \notin A$, then x is covered in $A \cup \{x\}$.

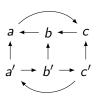
In the 2-player game, if players start to use only strategies from A, then no player has an incentive to experiment another strategy x.

Covering sets are stable by intersection \Rightarrow there is a minimal covering set MC(T) (and it is not empty).

In game theory: called the *weak saddle* of the game.

We have $MC \subseteq UC^{\infty}$.

Minimal covering set: example



	а	b	с	a'	b'	<i>c</i> ′
а			1		1	1
b	1			1		1
с		1		1	1	
a'	1				1	
b′		1				1
с′			1	1		

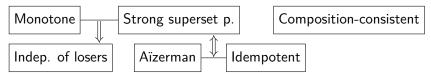
Claim: $MC(T) = \{a, b, c\}$. Proof:

- It is a covering set: if we add a' (for example), it is covered by b.
- It is minimal (since there is no Condorcet winner).

This proves that we may have $MC(T) \subsetneq UC^{\infty}(T)$.

Minimal covering set

Properties of Minimal covering set



And $MC \subseteq UC^{\infty} \subseteq UC$.

Essential set E

Lemma: the 2-player game associated to a tournament has a unique mixed-strategy equilibrium \mathbf{p} , and it is strict.

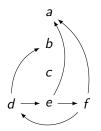
Essential set: all candidates who have a positive weight in **p**.

We have $E \subseteq MC$.

	а	b	с	d	Copeland score
а		1	1		2
b			1	1	2
с				1	1
d	1				1

$$\mathbf{p} = \left(\frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3}\right).$$
$$\Rightarrow E(T) = \{a, b, d\}$$

Essential set: example



	а	b	С	d	е	f
а		1	1	1		
b			1		1	1
с				1	1	1
d		1			1	
е	1					1
f	1			1		

$$\mathbf{p} = rac{1}{9}(3, 1, 1, 1, 3, 0) ext{ (believe me)}.$$

 $\Rightarrow E(T) = \{a, b, c, d, e\}.$

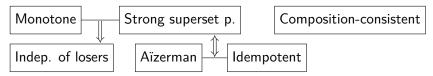
If we add f, then f is not covered. So, $\{a, b, c, d, e\}$ is not a covering set.

$$\Rightarrow MC(T) = \{a, b, c, d, e, f\}.$$

This proves that we may have $E(T) \subsetneq MC(T)$.

Essential set

Properties of Essential set



And $E \subseteq MC \subseteq UC^{\infty} \subseteq UC$.

Conclusion

Plan

Basic notions

Miscellaneous solutions

"Game-theory" solutions

Conclusion

Tournament solutions

March 27, 2024- 39

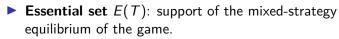
Take-away

Tournament: complete, antisymmetric and irreflexive.

Tournament solution: selects a subset a "best" candidates.

Seeing the tournament as a **2-player game** leads to interesting tournament solutions. In particular:

Minimal covering set MC(T): if players start using only strategies from MC(T), no one has an incentive to try another strategy;



Both these solutions are monotone, verify strong superset property and are composition-consistent.

The essential set is finer: $E \subseteq MC$.

Conclusion

Thanks for your attention

Questions?

Tournament solutions

March 27, 2024- 41

Conclusion

Monotonicity and SSP \Rightarrow Indep. of losers

Let (x, y) two losers in T, with yTx.

By monotonicity, if $y \in S(T_{<x,y>})$, then $y \in S(T)$, which is false. So, $y \notin S(T_{<x,y>})$.

Using SSP twice, we now have:

$$S(T) = S(T - y) = S(T_{\langle x, y \rangle} - y) = S(T_{\langle x, y \rangle}).$$

