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Is Reinforcement Learning 
all you need?
An algorithm cheat sheet 
for sequential decision making 
with applications to telecom

Lorenzo Maggi (Nokia Bell Labs)
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Sequential planning
Markov Decision Process model

• An agent (in telecom: base station, SON server, UE)

✓ observes the current “state” 𝑠𝑡 of the environment 

• In telecom: channel conditions, UE buffer state, past UE throughput

✓ takes an “action” 𝑎𝑡 according to a probabilistic strategy 𝜋

• In telecom: beam coefficients, which UE to schedule, which cell to switch off

✓ receives a “reward” 𝑟𝑡
• In telecom: UE throughput, energy savings

• The environment (in telecom: neighbor BTSs/UEs) reacts to the agent’s action and

✓ changes its “state” according to some stochastic law 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

• Agent’s goal: maximize sum of rewards across time max
𝜋

σ𝑡 𝛽
𝑡𝑟(𝑠𝑡, 𝑎𝑡) , 𝛽 ∈ [0,1)

• Agent may be oblivious of such model and only observe new states/rewards

Agent

Environment

action 𝑎state 𝑠

reward 𝑟
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Sequential planning
Markov Decision Process model

𝑠1

𝑠2

𝑠3

𝑠4
𝑝(𝑠4|𝑠1, 𝑎)

• Take action 𝑎
from distribution 𝜋(𝑠1)

• Receive reward 𝑟(𝑠1, 𝑎)

Goal: max
𝜋

𝔼σ𝑡 𝛽
𝑡𝑟(𝑠𝑡 , 𝑎𝑡)
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Is RL all you need?

• MDP formulation is (overly) appealing:

✓ It is general and can describe many real problems!

✓ Can be solved via “standard” Reinforcement Learning (RL)

• Yet: 

✓ There exist several sub-variants of the general MDP model 

✓ …with ad-hoc algorithms converging faster than RL!

• if all you have is a hammer, everything looks like a nail ☺
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Is RL all you need?
A subjective algorithm cheat sheet
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Who needs planning?

E.g., News recommendation: Recommend the appropriate 

news (=action) to the next person (=state)

❖ no impact of action on state evolution

❖ act greedily, just care for the present! 

E.g., Chess: By moving a piece (=action) the board 

(=state) changes

❖ the action impacts the state evolution

❖ plan ahead!

From “LinUCB” paper
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No planning, Model known

• No planning: Greedily max
𝑎

𝑟 𝑠𝑡 , 𝑎 , ∀𝑡

• If the reward function 𝑟 is known, then this boils 

down to classic (static) optimization!  

Static optimization
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No planning, Model unknown, Have data

• No planning: Greedily max
𝑎

𝑟 𝑠𝑡 , 𝑎 , ∀𝑡

• The model (reward function 𝑟) is unknown

• Yet, we have historical data containing tuples:

✓ State 𝑠𝑖

✓ Action 𝑎𝑖

✓ (noisy) Reward 𝑟𝑖

→ We can approximate 𝑟 𝑠, 𝑎 𝑠,𝑎 via supervised learning:

𝜃∗ = argmin
𝜃



𝑖

𝑟𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖
2

where 𝑟𝜃 can be the output of a neural network with weights 

& biases 𝜃

→ At each time 𝑡, find optimal action by max
𝑎

𝑟𝜃 𝑠𝑡, 𝑎 , ∀𝑡

Supervised learning
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No planning, Model unknown, No data
Online learning

• No planning: Greedily max
𝑎

𝑟 𝑠𝑡 , 𝑎 , ∀𝑡

• The model (reward function 𝑟) is unknown

• No historical data

• Optimize 𝒓 while learning it!

✓ If reward is uncorrelated across states and actions:

→ a different multi-armed bandit in each state

✓ If reward is correlated across states but not actions:

→ LinUCB: 𝑟 𝑠, 𝑎 ≈ 𝜃𝑎,1𝑠 + 𝜃𝑎,2

✓ If reward is correlated both across states and actions:

→ Contextual Gaussian Processes
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Planning, Model known, Easy MDP
Solve an MDP

• Need long-term planning:

max
𝜋

𝔼σ𝑡 𝛽
𝑡𝑟(𝑠𝑡, 𝑎𝑡)

• Lucky enough to know the model:

o reward function 𝑟 𝑠, 𝑎 ∀𝑠,𝑎

o transition probabilities 𝑝 𝑠′ 𝑠, 𝑎 ∀𝑠,𝑠′,𝑎

• Lucky enough that state/action space is so small that the 

MDP is solvable via

• policy / value iteration / linear programming etc.

• Unfortunately, in practice, this rarely occurs…
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Planning, Model known, Hard MDP
Simulation-based search

• Model is known

• …but MDP cannot be solved exactly: curse of dimensionality

• Simulate the model and apply:

✓ Approximate Dynamic Programming

✓ Monte-Carlo Tree Search

✓ Alpha Zero
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Planning, Model unknown, Lots of data
Offline Reinforcement Learning

• Need long-term planning

• Model unknown 

• Have (lots of) historical data

• Analogous to supervised learning, but in dynamic settings:

Offline Reinforcement Learning 

• Holds tremendous promise

• Yet, difficult to put into practice: 

counterfactual “what if” queries are impossible!
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Planning, Rely on expert knowledge 
Policy optimization

• Need long-term planning

• Model unknown 

• Domain expert has designed a policy 𝜋𝜃 parametrized by 𝜃

• Goal: optimize 𝜃

• Option 1: à la RL: policy gradient, Proximal Policy Optimization 

(PPO, used for LLMs), etc.

𝜃 ← 𝜃 + σ𝑡=1
𝑇 𝐺𝑡∇𝜃 log 𝜋𝜃(𝑠𝑡, 𝑎𝑡)

• Option 2: Black-box, e.g., Bayesian optimization Bayesian optimization
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Predict & Plan
Model predictive control

• Need long-term planning

• Model can be predicted over a short future time horizon 𝑇

→ Model predictive control: At each time step 𝑡

i. Predict state transition Ƹ𝑝 and reward Ƹ𝑟 over next 𝑇 steps

ii. Compute the (deterministic) optimal strategy over next 𝑇 steps:

ො𝜋𝑡+1, … , ො𝜋𝑡+𝑇 = argmax
𝜋

𝔼σ𝑖=1
𝑇 Ƹ𝑟(𝑠𝑡+𝑖 , 𝑎𝑡+𝑖)

iii. Implement the strategy ො𝜋𝑡+1 only at next step 

• In practice, works well even if predictions are poor

• Successful industrial applications 

(chemical plants, oil refineries, power systems)

• Yet, requires high online computational complexity
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Last but not least….RL!

• Need long-term planning

• Model is unknown and unpredictable

• Expert domain strategy is not good enough

→ “Full-blown” Reinforcement Learning

https://spinningup.openai.com/en/la

test/spinningup/rl_intro2.html

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Bonus: PID/Adaptive control

• Action (knob) is unidimensional (e.g., car ’s wheel steering angle)

• Time is continuous

• When action 𝑎(𝑡) is applied, output 𝑦(𝑡) is produced (e.g., car position)

• Reference 𝑦𝑐(𝑡) is the desired output (e.g., car in the middle of the lane)

• Reward has the form 𝑒 𝑡 = 𝑦(𝑡) − 𝑦𝑐(𝑡)

• Goal: lim
𝑡→∞

𝑒(𝑡) = 0

→ Proportional-Integral-Differential (PID) or adaptive control

P: 𝐾𝑝𝑒(𝑡)

I: 𝐾𝑖  𝑒 𝑟 𝑑𝑟

D:  𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡)

+ environment+
−

𝑢(𝑡) 𝑦(𝑡)𝑦𝑐(𝑡) 𝑒(𝑡)

PID control: state not observed
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Application to Link Adaptation & Scheduling
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Link Adaptation (LA)
General objective

• Depending on the channel quality (SINR), we want to adapt Modulation & Coding Scheme (MCS)

o 𝑛 = # bits / per symbol (modulation scheme)

o 𝑐 = # bits of information / total # bits—counting redundancy for error correction (code rate)

to maximize user throughput

MCS index
Low 𝑛, 𝑐 High 𝑛, 𝑐

𝑛𝑐 = # useful bits / symbol

Prob(correct detection)

throughput
Given the current SINR:

*

https://www.youtube.com/watch?v=Jm03INd9Nuw

https://www.youtube.com/watch?v=Jm03INd9Nuw
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State of the Art
Inner & Outer Loop Link Adaptation (ILLA & OLLA)

• ILLA: static mapping SINR → MCS

• Computed as the MCS guaranteeing BLER=X% (e.g., 10%)

• Rational: BLER not too high (too many retransmissions) 

not too low (too much overhead)

• Pb: SINR is poorly estimated by UE

→ OLLA provides corrective factor Δ to estimated SINR

Δ𝑡 = ቊ
Δ𝑡−1 + 𝜃1 if HARQ𝑡 = ACK

Δ𝑡−1 − 𝜃2 if HARQ𝑡 = NACK

SINR

MCS ILLA mapping

Estimated

SINR

Δ OLLA

correction
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1) LA via Online learning

• Set goal: Maintain BLER = 𝑿%, e.g., 10%

✓ Given current “state” 𝑠𝑡 (SINR estimates over recent past)

✓ Find action 𝑎𝑡 (MCS) 

✓ Such that Pr Block error at time 𝑡 ≔ 𝑓(𝑎𝑡, 𝑠𝑡) = 𝑋

• Reward: −|𝑓 𝑎𝑡, 𝑠𝑡 − 𝑋|

• No planning needed: action does not impact state evolution

• Pb: learn 𝑓 while optimizing it

→ Online learning
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2) LA via Policy optimization
Expert designed

• Define state 𝑠𝑡 = (Δ𝑡−1, SINR𝑡, HARQ𝑡)

• Action 𝑎𝑡 ∈ 𝐴 is MCS used for next transmission

• Deterministic ILLA+OLLA (expert designed) policy: 
𝜋𝜃 𝑠𝑡 = ILLA SINR𝑡 + Δ𝑡(Δ𝑡−1, HARQ𝑡) , ∀𝑡

where Δ𝑡 = ቊ
Δ𝑡−1 + 𝜃1 if HARQ𝑡 = ACK
Δ𝑡−1 − 𝜃2 if HARQ𝑡 = NACK

• Reward = throughput

• Note: Planning is needed (state evolution depends on action)

→ Optimize 𝜃 via policy optimization
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3) LA via Reinforcement Learning

• Define rich state: 

o CQI

o #ACK, #NACK over a recent time window

o Last MCS

o Buffer state, etc.

• Action = MCS for next transmission or OLLA SINR corrective factor Δ𝑡

• Reward = throughput

• No pre-defined parametrized policy

→ Full-blown Reinforcement Learning
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4) LA via Adaptive control

• Action / Knob: MCS index

• Produced output: BLER

• Reference: X%

• Goal: Error = BLER – X% = 0
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Conclusions

• The MDP model is general and can be solved via RL

→ Strong temptation to use RL everywhere!

• Yet, MDP model boils down to simpler models (with ad-hoc algorithms) depending on:

o whether long-term planning is needed

o how much data is available

o whether a reliable simulator is available 

o whether we can rely on domain-expert knowledge
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Check out our blog! ☺

https://mlwithouttears.com/

Blog post

https://mlwithouttears.com/
https://mlwithouttears.com/2023/10/27/is-reinforcement-learning-all-you-need/
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