Is Reinforcement Learning
all you need?

An algorithm cheat sheet
for sequential decision making
with applications to telecom

Lorenzo Maggi (Nokia Bell Labs)
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Sequential planning
Markov Decision Process model

2

An agent (in telecom: base station, SON server, UE)

v observes the current “state” s; of the environment state s

In telecom: channel conditions, UE buffer state, past UE throughput reward r

v takes an "action” a; according to a probabilistic strategy

In telecom: beam coefficients, which UE to schedule, which cell to switch off

v receives a "reward” r;

In telecom: UE throughput, energy savings

The environment (in telecom: neighbor BTSs/UEs) reacts to the agent’s action and

v changes its “state” according to some stochastic law p(s¢411Se at)

Agent's goal: maximize sum of rewards across time max Y.; Btr(s; a;), B € [0,1)
VA

Agent may be oblivious of such model and only observe new states/rewards
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Sequential planning
Markov Decision Process model

oy S
v@%\
» Take action a

41,1
from distribution (s?) | s% Pl e) g4 Goal: max E Y, Bir(ss, ar)
* Receive reward r(s?, a) \ T
(53
/&{ >
Q) s
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Is RL all you need?

- MDP formulation is (overly) appealing:

v It is general and can describe many real problems!
v Can be solved via “standard” Reinforcement Learning (RL)

. Yet

v There exist several sub-variants of the general MDP model

v ...with ad-hoc algorithms converging faster than RL!

- if all you have is a hammer, everything looks like a nail @

4
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LEGEND:
on OFFLINE data
and/or simulation

Need long-term planning?
p(Sesalse, ar) # p(Seaalse)

N Y
on LIVE system
GOAL: GOAL:
max7(sy, a),Vt (ST) maxE ¥, 7 (s, ar) (LT)
a T
Know model? Know model?
{r(s,a)}sa {r(s,a),p(s'ls,a)}ss'
Y N Y N
Have data? N | Have compute N Have data?
Can solve (ST)? Can solve (LT)? P ’
(ST {(si,ap )} ve (LT) resources? {Gsp a1 S0 )
N ‘\/\‘ lv lv /\\
Mathematical Approximate Supervised Online _MPP . ApprO).(in?ate. Offline RL Rely on expert
optimization methods Learning Learning optimization MDP optimization ine knowledge?
« Convex opt * With guarantees * DNN *» Contextual * Policy iteration * Approximate Y N
* Combinatorial opt ¢ Metaheuristics * Regression bandits * Value Iteration Dynamic programming
(linear, tree, etc.) * Linear Programming * Monte-Carlo
Tree Search Design Can predict model?

* Alpha Zero strategy 7y
l M

Optimize T,

I S R L a I I yo u n e e d ? « Policy opt RL Model predictive Reinforcement

« Bayesian opt control Learning (RL)

A subjective algorithm cheat sheet + Model-based AL

* Model-free RL
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Who needs planning?

Need long-term planning?
P(Seealse, ar) # p(Searlse)

N
GOAL:
maaxr(st,a}, vt (ST)
|

E.g., News recommendation: Recommend the appropriate
news (=action) to the next person (=state)

% no impact of action on state evolution

% act greedily, just care for the present!

Featured Entertainment | Sports | Life

McNair's final hours
I revealed
STORY::
de theats r's*ileged killer
as losing control. » Details
= | » UConn murder vict med

@ Find Steve McNair murder case

il S(Fl«,\'mw.mm hours - \‘;:Fs ms of 'shootin
el s ight
;(:iE awford stays fierce B At
(ol in ABidk mini pladl’
» More:

From “LinUCB" paper
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GOAL:
max EX.B'r(se.ar) (LT)
|

E.g., Chess: By moving a piece (=action) the board
(=state) changes

K/

% the action impacts the state evolution

X/

% plan ahead!
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No planning, Model known

Static optimization

- No planning: Greedily max r(s;, a), Vt
a

7

Need long-term planning?
P(Sexalse, @) # p(sesalse)

GOAL:
max r(se, @),

I

Know model?
{r(s/@)}s.a

Have data?

{Gsi a1}

Can solve (LT)?

If the reward function r is known, then this boils <
! v/ N /\ Y

down to classic (static) optimization!

PRINCETON LANDMARKS

IN MATEEMATICS

convex
Optimization

Lingar
Programming

and Extensions
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Mathematical Approximate Supervised Online MDP

optimization methods Learning Learning optimization

* Convex opt * With guarantees * DNN * Contextual * Policy iteration

* Combinatorial opt ¢ Metaheuristics * Regression bandits * Value Iteration
(linear, tree, etc.) * Linear Programmi

Approximation

Algorithms
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No planning, Model unknown, Have data
Supervised learning

- No planning: Greedily maxr(s;, a), Vt
a

- The model (reward function r) is unknown

- Yet, we have historical data containing tuples:
v State s;
v Action a;
v (noisy) Reward r;
> We can approximate {r(s, a)}s o Via supervised learning:
0" = argminZ(rg (si,a) —1;)°
0 .
l
where 1y can be the output of a neural network with weights
& biases 6

> At each time t, find optimal action by max ry (s, a), vVt
a
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Mathematical
optimization

 Convex opt
* Combinatorial opt

Need long-term planning?
P(Sexalse, @) # p(sesalse)

GOAL:
max r(se,a

Know trodel?
{r(s,a)
v \

Have data?
{Csi, aifrd}i
Approximate Supervised Online
methods Learning Learning
* With guarantees * DNN + Contextual
* Metaheuristics * Regression bandits

(linear, tree, etc.)

Can solve (LT)?

MDP
optimization

* Policy iteration
* Value Iteration
* Linear Programmi
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No planning, Model unknown, No data

Online learning

9

No planning: Greedily maxr(s;, a), Vt
a

The model (reward function r) is unknown

No historical data

Optimize r while learning it!

v If reward is uncorrelated across states and actions:
- a different multi-armed bandit in each state

v If reward is correlated across states but not actions:

= LinUCB: r(s,a) = 0415 + 04

v If reward is correlated both across states and actions:

- Contextual Gaussian Processes

© 2023 Nokia

Need long-term planning?
P(Sexalse, @) # p(sesalse)

GOAL:
max r(se,a

Know\model?
{r(s, Qs
N

Hava data?
{(si, aND}i
Y N / N‘ Y

Mathematical Approximate Supervised Online MDP

Can solve (LT)?

optimization methods Learning Learning optimization
* Convex opt * With guarantees *+ DNN + Contextual * Policy iteration
* Combinatorial opt ¢ Metaheuristics * Regression bandits * Value Iteration
(linear, tree, etc.) * Linear Programmi
Lip

A Contextual-Bandit Approach to UCB
Personalized News Article Recommendation

Bandit
. o " "1 . -
Lihong Lit, Wei Chut, John Langford! Robert E. Schapire*
Algorlthms ih '%%hmw gé;s N _‘@'Ya}:\mlfabs 'De;:tnf[‘.nmputerpSclance
ihong, chuwei@yahoo- ahoo-inc.com Princeton University
TOR LATTIMORE 9 inc.com ¥ ey schapire@cs.princeton.edu

CSABA SZEPESVARI

Contextual Gaussian Process Bandit Optimization
\ 1
Andreas Krause Cheng Soon Ong
urich,
sngeint.ect

Department of Computer
8092 Zurich, S
krausea@ethz.ch chen



Need long-term planning?

P(Sesnlse @) # plsesalse) LEGEND:
- on OFFLINE data
} A andJor simulation

on LIVE system

Planning, Model known, Easy MDP
Solve an MDP S

Need long-term planning: i v compte | W[ i dre
max E > Btr(se ap) N\ ' zsves ‘(v/ S
S AT e | O
Lucky enough to know the model: P
o reward function {r(s, a)}vsq sy
o transition probabilities {p(s’[s, a)}ys s’ o ‘jP'f“"'ff" ..,d,.,,';k,.,,, e,
D el Leaming L

Model-based RL

- Lucky enough that state/action space is so small that the MARKOV

MDP is solvable via DECISION

- policy / value iteration / linear programming etc. PROCESSES

- Unfortunately, in practice, this rarely occurs...
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Need long-term planning? J—
P(Seanlse. ) # p(sesslse) LEGEND:

Planning, Model known, Hard MDP
Simulation-based search

- Model is known ﬂ
- ..but MDP cannot be solved exactly: curse of dimensionality N

- Simulate the model and apply:
v Approximate Dynamic Programming
v Monte-Carlo Tree Search
v Alpha Zero

Selection —— Expansion —— Simulation —— Backtracking

P 45 4 4

*
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Approximate Dynamic
Programming

Warren 8. Powell

WILEY

on OFFLINE data
and/or simulation

on LIVE system

Know mogel?
{r(s,a).p(sfs.a)}s ¢

Have compute N ,| Have data?
resources? {(si, @i i si41)}i

Y \¢ Y N
v v .
Approximate * Reb
MDP PrOXNTI 3 ely on expert
ptimizati MDP optimizati Offiine RL knowledge?

mate Y N
Linear as do ) &
Design Can predict model?
gy To
Y N
v
x .

Optimize my 5
. Model predictive  Reinforcement
) control Learning (RL)

Bandit based Monte-Carlo Planning

Levente Koesis and Csaba Szepesviri

Computer and Automation Research Institute of the
Hungarian Academy of Sciences, Kende u. 13-17, 1111 Budapest, Hungary
kocsis@sztaki.hu

Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm
David Silver,'* Thomas Hubert,'* Julian Schrittwieser,'*
loannis Antonoglou,' Matthew Lai,' Arthur Guez,! Marc Lanctot,'

Laurent Sifre,' Dharshan Kumaran,' Thore Graepel,'
Timothy Lillicrap,' Karen Simonyan,! Demis Hassabis'

'DeepMind, 6 Pancras Square, London N1C 4AG.



Need long-term planning?
P(Seslse, @) # p(sesalse) LEGEND:
- on OFFLINE data

and/or simulation

on LIVE system

Planning, Model unknown, Lots of data
Offline Reinforcement Learning s

{r(s,a),p(XJs. @)} ¢ q

- Need long-term planning ﬂ [mmome | P compre | '«5%??3;.

- Model unknown ¥ ! ¥ B2
. O, optmistion  MDPopomision Offineml | Rolonexpert
. Have (lots of) historical data e B

e :.V e ’1;'—“':" . va i N
- Analogous to supervised learning, but in dynamic settings: besign [ compredict mocer |
Offline Reinforcement Learning v N

Offline Reinforcement Learning: Tutorial, Review,
and Perspectives on Open Problems

- Holds tremendous promise

- Yet, difficult to put into practice:
" ecn . . . Sergey Levine'-?, Aviral Kumar', George Tucker?, Justin Fu'
counterfactual “what if” queries are impossible! " LUC Berkeley *Google Research, Bain Team

Abstract

(a) online reinforcement learning  (b) off-policy reinforcement learning (c) offline reinforcement learning In this ttorial article, we aim to provide the reader with the conceptual tools
needed to get started on research on offline reinforcement learning algorithms:
reinforcement learning algorithms that utilize previously collected data. without
additional online data collection. Offline reinforcement learning algorithms hold
tremendous promise for making it possible to turn large datasets into powerful de-
cision making engines. Effective offline reinforcement learning methods would be
able to extract policies with the maximum possible utility out of the available data.
thereby allowing automation of a wide range of decision-making domains, from
healthcare and education to robotics. However, the limitations of current algorithms
make this difficult. We will aim to provide the reader with an understanding of
these challenges, particularly in the context of modemn deep reinforcement learning
methods, and describe some potential solutions that have been explored in recent
work to mitigate these challenges, along with recent applications. and a discussion

= = =

rollout data {(si, a;, s}, 7;) rollout data {(s:,a;,5,,7i)} {(si,a:,80,1)}

data collected ONCe == == == —"—
with any policy training phase of perspectives on open problems in the field.



Need long-term planning?
P(Sesnlse, ) # p(searlse) LEGEND:
- on OFFLINE data

and/or simulation

on LIVE system

Planning, Rely on expert knowledge
Policy optimization o

{r(s, @), p(X{s, V)55 a

- Need long-term planning w (e ap] *{ Foeomprc]_n {(H\\d\»
Model unknown N v v ZEEN

. . . . l:linl M;P : ,‘ ely onexpert
- Domain expert has designed a policy g parametrized by 6 Lebming  opimsaion = Rknyow)dg‘l?
Contextual *Po on ~_N
- Goal: optimize 6
\ N

- Option 1: a la RL: policy gradient, Proximal Policy Optimization b )
(PPO, used for LLMs), etc. e Modl e Reforcames
00+ GVglogmg(se ay) B Moo

- Option 2: Black-box, e.g., Bayesian optimization Bayesian optimization

15 Iteration O 15 Iteration 1 15 Iteration 2
1.0 e 10 Lo 1.0 Lo
- S . .
. . .. . J . ) 05 7 5 05 < . 05
Proximal Policy Optimization Algorithms 00 / s ool m— 7 | 0o 7 g
i -05 \\\ s N, |-os \\\ e N, |-os “\ S e
- . . . . _10 “aar?’ 10 et 1o e ® Observations
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov : : GP =20 interval
OpenAl o -0.5 0.0 0.5 P -0.5 0.0 05 o -05 0.0 0.5 1.0
{joschu, filip, prafulla, alec, oleg}@openai.com s teration 3 s Iteration 4 s Ireration 5
1.0 1.0 10
0.5 05 05
0.0 = I 0.0 L 0.0 },’
~05{ ™ oy 051 s —051 4
. e ) b - S o
=10 -1.0 -1.0 Rt
. = —05 00 05 1p 13 —0.5 00 05 o L8 05 0.0 s 10 ho ( I A
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Need long-term planning?

P(Seanlse, @) # p(sesslse)

Predict & Plan

Model predictive control

- Need long-term planning o

- Model can be predicted over a short future time horizon T N
> Model predictive control: At each time step t ‘01”"9

14

Predict state transition p and reward # over next T steps
i. Compute the (deterministic) optimal strategy over next T steps:
Mpp1, oo, M = ATG mgx]EZiTﬂf(sHi, A+i)
ii. Implement the strategy 7;,41 only at next step
In practice, works well even if predictions are poor

Successful industrial applications
(chemical plants, oil refineries, power systems)

Yet, requires high online computational complexity

© 2023 Nokia

suar) (LT)

Know\ model?
{r(s,a),p(X{s. @)} ¢ o

LEGEND:
on OFFLINE data
and/or simulation

on LIVE system

= N | Have compute ve data?
2
Can solve (LT): resources? {Gsi, @G, Si01) )i
v Y v\
v v . g \ .
MDP Approximate . Rely 3 expert
optimization MDP optimization  Offline RL k:ow dgpe?

Second Edition 1

Model
Predictive
Control

Eduardo F. Camacho
and Carlos Bordons

NI SHOOBINGL 033NB0GH

« Bayesian opt

- g
Design Can predyct model?
gy To
Y N
v / h
x .

Optimize y
, Model predictive  Reinforcement
control Learning (RL)
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Last but not least....RL!

- Need long-term planning

Model is unknown and unpredictable

- Expert domain strategy is not good enough
- “Full-blown” Reinforcement Learning

states
reward r

actiona

Policy Gradient
A2C { AZC
PPO

TRPO

15 © 2023 Nokia

Policy Cptimization

LEGEND:

on OFFLINE data

RL Algorithms

Need long-term planning?
P(SesalSe @) # P(Sesalse)

and/or simulation
on LIVE system

Know rpodel?
{r(s,a), p(s WK @}s.5' a

Yy

Can salve @y |-N| Have compute | N
- resources?

Hawg data?
{(si @i, Pi+1) )

Y Y Yy
v v P a
MDP Approximate . Rely o\expert
optimization MDP optimization ~ Offline RL k:owle pe?

-
Design Can predid{ model?

« Alpha Zero ay T
\ N
v / \
» N

Optimize y

Reinforcement

Model predictive
Learning (RL)

control

(—;ﬁ

Model-Free RL

co

Q-Learning

DQN
»  DDPG <
€51
TDZ
QR-DQN
> SAC <
HER

Model-Based RL

https://spinningup.openai.com/en/la

§: test/spinningup/rl intro2.html

Given the Model

\—0 AlphaZero

Learn the Model

‘World Models
I2A
MBMF

NO<IA
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https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Bonus: PID/Adaptive control

Action (knob) is unidimensional (e.g., car’s wheel steering angle)

Time is continuous

- When action a(t) is applied, output y(t) is produced (e.g., car position)

Reference y.(t) is the desired output (e.g., car in the middle of the lane)

Reward has the form e(t) = y(t) — y.(t)
Goal: tlim e(t) =0

-> Proportional-Integral-Differential (PID) or adaptive control

\ 4

P: Kpe(t)

c(t
Ye(t) e(t) K [ e(rydr u(t)

A 4

A 4

d
D: Kq=-e(t)

environment

PID control: state not observed

y(©)

© 2023 Nokia

Annual Review of Control, Robotics, and
Autonomous Systems

Anuradha M. Annaswamy

Active \.<L|| ce Comtrol Labe , De |ur!l|| of Mechanscal Eng !, ng, \l s husett:

Instie f Technology, Ca t I \lm:h x, USA; e |JAI
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Application to Link Adaptation & Scheduling
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cQl: 7 CQlr 9
Modulation: 16QAM Modulation : 64QAM

Link Adaptation (LA) ’ ‘ (te)

General objective

CcQl: 5 Modulation : 256QAM
Modulation: QPSK https://www.youtube.com/watch?v=Jm03INdINuw

Depending on the channel quality (SINR), we want to adapt Modulation & Coding Scheme (MCS)

o n = # bits / per symbol (modulation scheme)
o ¢ = # bits of information / total # bits—counting redundancy for error correction (code rate)

to maximize user throughput

Given the current SINR:

nc = # useful bits / symbol

Prob(correct detection)

»

Lown, ¢ MCS index ~ Highmn.c NO<ILA
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https://www.youtube.com/watch?v=Jm03INd9Nuw

eOLLA: an enhanced outer loop link
adaptation for cellular networks

Francisco Blanquez-Casado’, Gerardo Gomez, Maria del Carmen Aguayo-Torres
a e O e r and Jose Tomas Entrami basaguas U E BTS

Inner & Outer Loop Link Adaptation (ILLA & OLLA) Mes L CQleff
< ILLA [e
SINR AN
| ¥
ILLA: static mapping SINR = MCS HARQ e |
Computed as the MCS guaranteeing BLER=X% (e.g., 10%) ¥
Rational BLER not too high (too many retransmissions)
not too low (too much overhead)
Pb: SINR is poorly estimated by UE
, . : MCS 4 ILLA mapping
- OLLA provides corrective factor A to estimated SINR
A,_,+6, ifHARQ, = ACK ;
At={t1 o - A OLLA
A,_; — 6, ifHARQ, = NACK ;_‘/correction
/ SINVR
Estimated
SINR
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1) LA via Online learning

Set goal: Maintain BLER = X%, e.g., 10%

v Given current “state” s; (SINR estimates over recent past)
v Find action a; (MCS)

v Such that Pr(Block error at time t) := f(a;, s;) = X
Reward: —|f (a;, s¢) — X|

- No planning needed: action does not impact state evolution

- Pb: learn f while optimizing it
- Online learning

20  © 2023 Nokia

Need long-term planning?
P(Sesalse, @) # p(Seaalse)

GOAL:

maxr(s,,a
a

Know\model?
{r(s, &Ys.a

Havddata? =
> ?
Can solve (ST)? ((b}m{‘)). Can solve (LT)?
v/ N vy N\ N Y
A/ - ,/ \. v
Mathematical  App Supervised Online MDP
P Learning Learning optimization

* Convex opt

* Combinatorial opt  » Metz

Bayesian Link Adaptation under a BLER Target

Vidit Saxena®! and Joakim Jaldén™
vidits@kth. jalden@kith se

e of Technology, Stockholm, Sweden

ricsson Research, Stockholm, Sweden

NO<IA



Need long-term planning?

P(Ses1lse. @) # p(Sesslse) LEGEND:

on OFFLINE data
and/or simulation

on LIVE system

2) LA via Policy optimization
Expert designed K"Q

{r(s,a),p(Ns: 0)}s.¢' a

Yy

. 1ta? : , | N | Have compute J Har - data?
Define state s, = (A1, SINR,, HARQ,) B el e )
N Y Y Y - \

Action a; € A is MCS used for next transmission o wor o - Re,m)axpm
Learning optimization MDP optimization  Offline RL knowlgdge?
Deterministic ILLA+OLLA (expert designed) policy: [
T[Q (St) = ILLA(SINRt + At(At—ll HARQt))I Vt e ——:: Agn Can predict model?
_ (A1 +6; iIfHARQ, = ACK o v N
where A = {AH — 0, ifHARQ, = NACK ,,(um Py

control Leaming (RL)

- Reward = throughput
- Note: Planning is needed (state evolution depends on action)
- Optimize 6 via policy optimization

21 © 2023 Nokia I\O( IA



Need long-term planning?

P(Se+115e,@0) # P(Seanlse) LEGEND:

on OFFLINE data
and/or simulation
on LIVE system

3) LA via Reinforcement Learning

ta?
2 a Can solve (LT)? N | Have compute
o resources?

- Define rich state: g it
Online MDP Approximate %
o CQ' L..T.‘i..\g . imi " MDP optimizati Offline RL

#ACK, #NACK over a recent time window - oresh
Y. \N
o Last MCS s '
. Pmmz.:'a Model predictive i:-infoyccrr::l:'t
o Buffer state, etc. “Sesancpt  contre el

Action = MCS for next transmission or OLLA SINR corrective factor A;

Reward = throughput
- No pre-defined parametrized policy
- Full-blown Reinforcement Learning

22 © 2023 Nokia I\O( IA



4) LA via Adaptive control

- Action / Knob: MCS index

- Produced output: BLER

- Reference: X%

- Goal: Error = BLER=X% =0

PID control: state not observed

D: KyZ-e(t)

y()

environment

23 © 2023 Nokia I\O( IA

Nokia internal use



Conclusions

- The MDP model is general and can be solved via RL

—> Strong temptation to use RL everywhere!

- Yet, MDP model boils down to simpler models (with ad-hoc algorithms) depending on:
o whether long-term planning is needed
o how much data is available
o whether a reliable simulator is available

o whether we can rely on domain-expert knowledge
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Machine Learning without tears

MATHY STUFF, HOW | WOULD HAVE LIKED TO LEARN THEM

Check out our blog! ©
https://mlwithouttears.com/ Fifty (four, actually) shades of

conformal prediction

February 4, 2024

Blog post

25

In this post we review different methods to compute prediction  Conformal prediction
intervals, containing the next (unknown) observation with high

probability and being at the heart of Conformal Prediction (CP).

We will highlight that each methaod is characterized by a

different and non-trivial trade-off between computational

complexity, coverage properties and the size of the prediction

interval. Scenario. We are...

Conformalized quantile regression

January 17, 2024

Pimp quantile regression with strong coverage guarantees Conformal prediction
Suppose that we are given a historical dataset containing

samples of the form , where and are the -th realizations of

(predictor) variable and of (predicted) variable , respectively. As

a running example, let us consider the following dataset: Cur

goal #1 is to estimate the trend of variable...

Quantile regression

January 3, 2024

© 2023 Nokia

An expressive and robust alternative to least square For
regression problems, least square regrassion (LSR) arguakly
gets the lion share of data scientists’ attention, The reasons are
several: LSR is taught in virtually every introductory statistics
course, it is intuitive and is readily available in most of software

libraries. LSR. estimates the mean of the predicted variable...

O<IA


https://mlwithouttears.com/
https://mlwithouttears.com/2023/10/27/is-reinforcement-learning-all-you-need/
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