

Platooning in VANETs

Emma BRAITEH

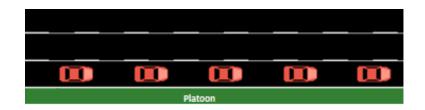
PhD Supervisors: F.BASSI, R. Khatoun

08 Februaury 2023

Outline

- 1. Platooning for Connected Vehicles
- 2. Existing Platooning Protocols
- 3. Cyber Attacks on Platoons
- 4. Bibliography

Introduction to Platooning



Platooning

Group of vehicles that drive on the same roadway in the same lane at a proximity of each other.

This application ensures:

- the safety of road users (rear-end collision avoidance)
- fuel efficiency and less CO₂ emissions
- traffic flow improvement
- driving comfort for drivers

4

Adaptive Cruise Control

Platoon of 2 vehicles

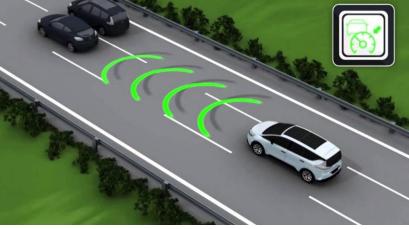
Step 1: Use of sensor data to calculate inter-vehicle distances

System Input:

- Radar/Lidar/Camera data
- Vehicle's speed
- Braking system status

System Output:

- Speed and longitudinal distance range
- Commands sent to the engine, pedal, and brake control system
- Status information for the driver


<u>Step 2</u>: Cooperation between vehicles to calculate minimal inter-vehicle distances

08/02/2023

5

Cooperative Intelligent Transport Systems (C-ITS)

ITS Stations (ITS-S)

- · Onboard Unit (OBU)
- Roadside Unit (RSU)

Main V2V Messages in Platooning

- Cooperative Awareness Messages (CAM)
- Collective Perception Messages (CPM)
- · Platooning Messages (to be standardized)

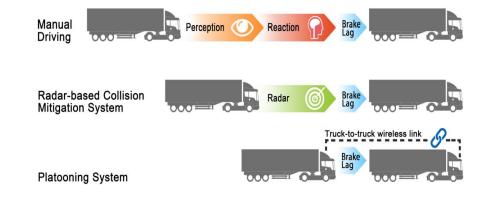
08/02/2023

Cooperative Awareness Message (CAM)

- Status and attribute information of the originating ITS-S
- Periodic messages
- Transmission frequency: 1 to 10Hz
- Modified version is used for platooning

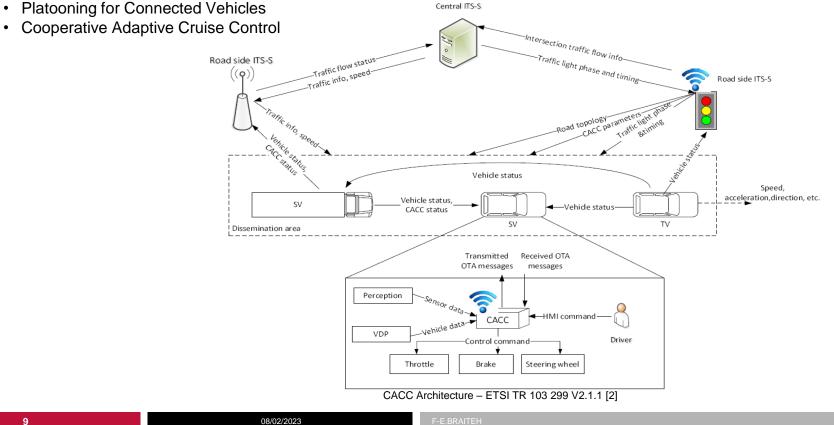
			CAM	
ITS PDU header	Basic Container	HF Container Vehicle HF Container or Other containers	LF Container (Conditional) Vehicle LF Container or Other containers (not yet defined)	Special vehicle Container (Conditional) Public Transport Container or Special Transport Container or

CAM General Structure: ETSI EN 302 637-2 [1]


Container	Data element	
	GenerationDeltaTime	
Basic	Station Type	
	Reference Position	
HighFrequency	Heading	
	Speed	
	Drive Direction	
	Vehicle Length	
	Vehicle Width	
	Longitudinal Acceler.	
	Curvature	
	Curvature Calc.Mode	
	Yaw Rate	
Low Frequency	Vehicle Role	
	Exterior Lights	
	Path History	

Platooning for Connected Vehicles

Use of sensor data and exchange of V2X (V2V, I2V) messages to locate other vehicles, estimate their driving speeds, and calculate the minimal inter-vehicle distance

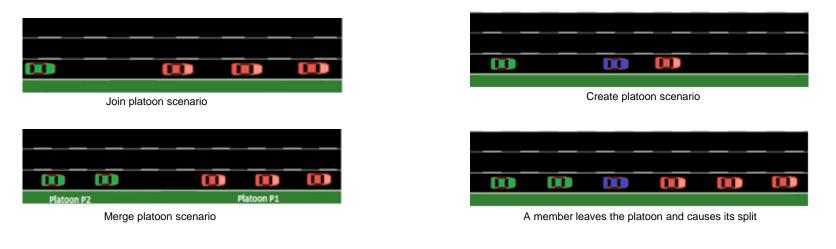


Platooning Systems [6]

Cooperative Application Architecture

TELECON

Cooperative Driving Share of trajectories and coordination of maneuvers


RSU may give the vehicles advices about their speed, time gap, lane change...

Platooning Functions

- Forming: at least 2 vehicles are needed to create a platoon
- Joining: a vehicle joins an existing platoon
- Merging: a platoon joins another platoon
- Leaving: a platoon member leaves the platoon
- Splitting: a platoon divides into 2 platoons
- Dissolving: the platoon ends

TELECO

Wireless Technologies

Direct communication

- Standardized
- Short-range ad-hoc broadcast
- Low latency
- Free technology (no communication costs)

Long distance communication (Mobile networks)

- More Mature
- Longer communication range
- Higher latency
- Communication costs

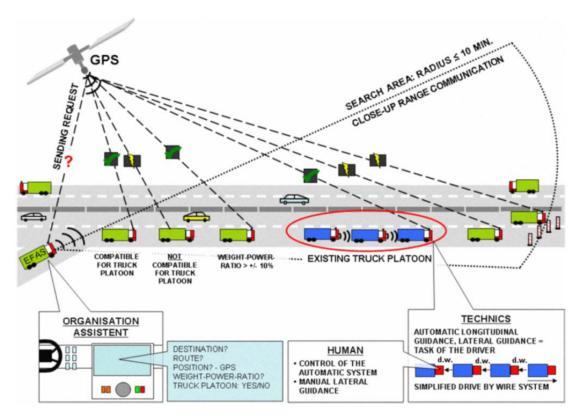
Existing Platooning Protocols

KONVOI [6]

German Project, 2005-2009

- V2V, V2I
- Lidar, radar, monocamera
- ITS G5, 3G

Driver <-> central server exchange: Find/join an existing platoon Create a platoon

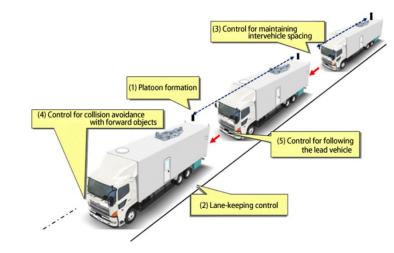

Order platoon members

Platooning Scenarios:

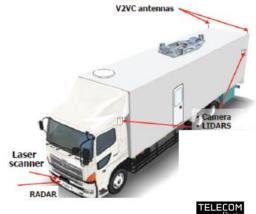
- Build, dissolve initiated by a driver
- Lane Change

Testing:

- 4 trucks, 60-80 km/hr, 10m spacing
- Results: Fuel savings on test sites only



Energy ITS [4] [5] [6]


Japanese Project, 2008-2012

- Radar, Lidar, lateral cameras for lateral control
- DSRC / IEEE 802.11p for longitudinal control

Protocol:

- Vehicles are already in a platoon, predefined gaps/speed
- Exchange of CAM + platooning data to maintain intervehicle spacing: Truck position, velocity, acceleration, the velocity of each truck, the braking signal, platoon ID and a truck position in a platoon, an obstacle location
- Truck control period: 10 ms
- 2 machine vision units for the lateral control based on lane marker detection

Energy ITS [4] [5] [6]

Testing:

- 4 trucks, a passenger car
- Constant speed of 80 km/h, gaps of 10m and 4m

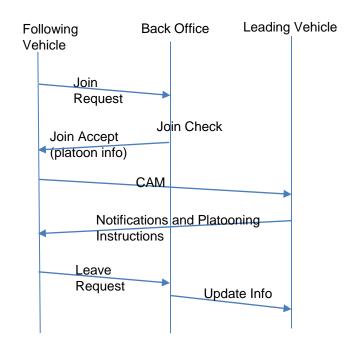
Scenarios:

- Passenger car driving at 60 km/h in front of the platoon -> detection, deceleration
- Passenger car trying to get into the gap between trucks -> detection, deceleration, lane change
- Platoon lane changing
- Platoon LV braking (manually)

Results:

- Energy consumption improvement: 14% at 4.7m gap.
- CO2 emissions: reduced by 2.1% and 4.8% at 10m and 4m gaps respectively

SAfe Road TRains for the Environment (SARTRE) [6]

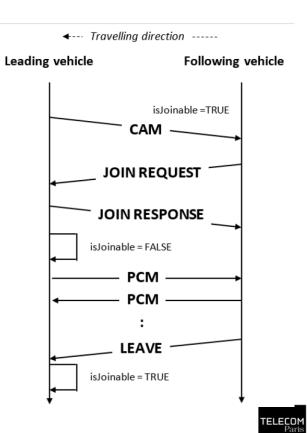

EU Project, 2009-2012

- V2V, V2I
- ITS G5, 3G

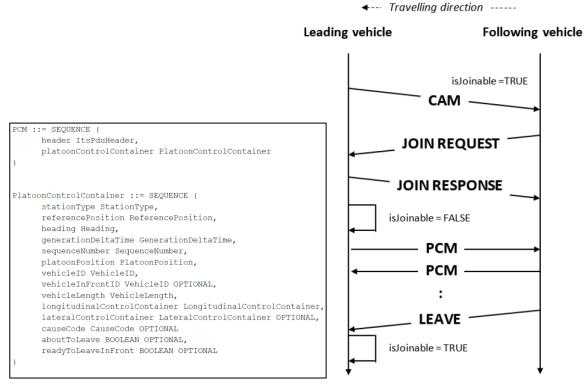
CAM/DENM are exchanged to maintain a dynamic safe distance between vehicles. Updated CAM and DENM with platooning information (ID, order,...)

Scenarios: Dynamic gaps, Platoon max. size, Create, join, leave, maintain

Testing Results: 2 trucks, 3 passenger cars Highest fuel saving: 16%, at 5m gap



Enabling SafE Multi-Brand pLatooning for Europe (ENSEMBLE) [7]


EU Project, 2018-2022

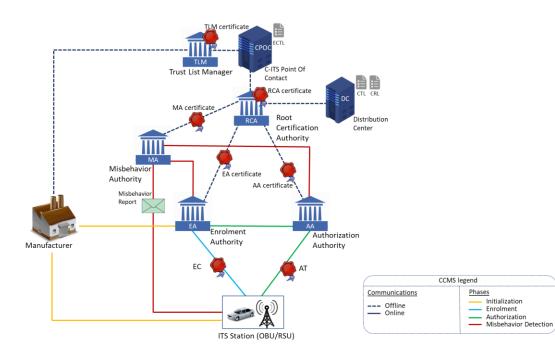
- CAMv2: Extended CAM with PlatooningContainer contains is Joinable flag
- Platooning Management Messages (PMM): are messages that contain the join request, join response, and the leave request.
- Platooning Control Messages (PCM): messages that contain data to control the vehicles in the platoon longitudinally and laterally.

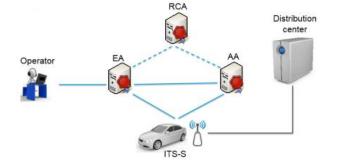
ENSEMBLE [7]

```
PMM ::= SEQUENCE {
    header ItsPduHeader,
    stationType StationType,
    referencePosition ReferencePosition,
    heading Heading,
    generationDeltaTime GenerationDeltaTime,
    message CHOICE {
        joinRequest JoinRequest,
        joinResponse JoinResponse,
        leaveRequest LeaveRequest
    }
```


😥 IP PARIS

19

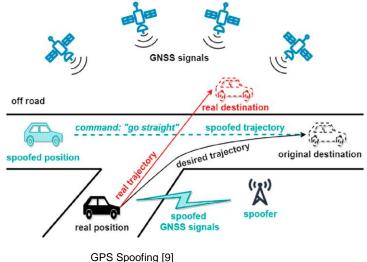


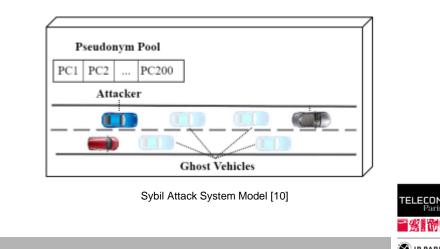


Cyber Attacks on Platoons

Security and Privacy

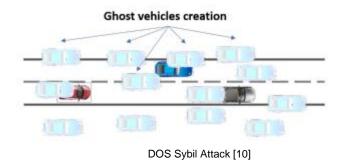
ISE PKI Architecture


TELECOM Paris



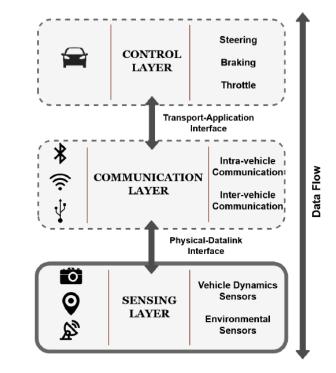
Modification of exchanged info from inside or from outside the platoon

- Geolocation Spoofing: the attacker impersonates another vehicle
- Sybil attack: the vehicle uses fake identities to inject data in the network related to fake nodes



08/02/2023

DOS Attack: radio jamming due to real or fake vehicles that downgrades the cooperative application to ACC mode!



Threats

Vehicular system attacks (soft or hard)

Attacks on sensors (blinding, spoofing, replay...) to generate false information [11]:

- Attacks on LiDARs may cause overcalculation or undercalculation of the distance to an object.
- Eavesdropping attacks on sensors allow monitor readings and transmissions.
- Blinding attack on cameras disables its function.

Data flow for Connected or Automated Vehicle [11]

Bibliography

Bibliography

[1] ETSI EN 302 637-2 v1.3.1, «Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service» 2014.

[2] ETSI TR 103 299 V2.1.1, «Intelligent Transport Systems (ITS); Cooperative Adaptive Cruise Control (CACC); Pre-standardization study» 2019.

[3] Car2car, «car-2-car.org,» [En ligne]. Available: https://www.car-2-car.org/about-c-its.

[4] S. Tsugawa, «An Overview on an Automated Truck Platoon within the Energy ITS Project» chez 7th IFAC Symposium on Advances in Automotive Control, Tokyo, 2013.

[5] ITSAsia, «itsasia-pacific» [En ligne]. Available: <u>http://itsasia-pacific.com/about-its-asia-pacific/examples-of-its-deployment-by-countryarea/2008-2012-energy-its%EF%BC%88japan/</u>.

[6] A. Baladora, A. Bazzi, U. Hernandez-Jayoc, I. d. l. Iglesiad et H. Ahmadvanda, «A survey on vehicular communication for cooperative truck platooning application,» Vehicular Communications 35, 2022.

[7] ENSEMBLE Project, «Platooning protocol definition and Communication strategy - L2.8» 2018

[8] ETSI TS 102 940 V1.3.1, «Intelligent Transport Systems (ITS); Security; ITS communications security architecture and security management» 2018.

[9] J. Peng, W. Hongyi et X. Chunsheng, «DeepPOSE: Detecting GPS spoofing attack via deep recurrent» Digital Communications and Networks 8, 2022.

[10] K. Joseph, H. Farah, B. J. Ines, K. Arnaud et L. Brigitte, «A Misbehavior Authority System for Sybil Attack» chez *The IEEE 10th Annual Ubiquitous Computing*, New York, 2019.

[11] E.-R. Zeinab, S. Karthikeyan, S. Niroop, F. S. Daisy et J. Siby, «Cybersecurity Attacks in Vehicular Sensors» IEEE SENSORS JOURNAL, 2020.

26

TELECON