HLOC: Hints-Based Geolocation Leveraging Multiple Measurement Frameworks

Quirin Scheitle, Oliver Gasser, Patrick Sattler, Georg Carle
Chair of Network Architectures and Services
Technical University of Munich (TUM)
Email: {scheitle,gasser,sattler,carle}@net.in.tum.de

Internet Measurement Reading Group @ LINCS

IP geolocation

132.227.123.8

 \downarrow

48° 50' 47.148" N

2° 21' 16.596" E

In practice: city or country

IP geolocation — Why?

- Advertisement
- Content licensing
- Content personalization (e.g. weather, news, language...)
- Content delivery networks
- ...
- Internet research (mapping, routing, security...)

Commercial services

- IP2Location, MaxMind, NetAcuity...
- Opaque geolocation mechanisms
 - Impossible to reproduce their results
- Paid or limited free version
- Works well for end-user IPs, less so for infrastructure IPs
 - Gouel, Matthieu, et al. "IP Geolocation Database Stability and Implications for Network Research." 2021 Network Traffic Measurement and Analysis Conference (TMA).

MaxMind self-reported end-user coverage

	Correctly Resolved	Incorrectly Resolved	Unresolved
GeoLite2 City (free service)	41%	55%	4%
GeoIP2 City	46%	48%	6%
GeoIP2 Precision City Service	48%	47%	6%

MaxMind GeoIP2 accuracy, France, 10km radius, excluding cellular networks https://www.maxmind.com/en/geoip2-city-accuracy-comparison

Measurement-based techniques

- Nearest-neighbor
 - Measure latency from multiple vantage points, assign target location to the closest vantage point
- Multilateration
 - Measure latency from multiple vantage points, find intersections of the speed-of-light circles
 - CBG (Constraint-Based Geolocation)
- Multilateration with topological information
 - TBG (Topology-Based Geolocation)
- ⚠ Vantage points distribution, measurement cost, probe filtering...

Data-based techniques

- Social graph
- Web page content
- WHOIS database
- ...
- Reverse DNS records

Reverse DNS records

 $8.8.4.4 \Rightarrow 4.4.8.8.$ in-addr.arpa \Rightarrow dns.google

Reverse DNS records

154.54.36.130 be2334.ccr42.**par**01.atlas.cogentco.com

193.51.181.170 gi8-7-**rennes**-rtr-021.noc.renater.fr

99.162.80.168 99-162-80-168.lightspeed.**irvnca**.sbcglobal.net.

4.4.119.193 et-4-0-0-0.bar4.**SaltLakeCity**1.Level3.net.

Dataset: https://opendata.rapid7.com/sonar.rdns_v2/

Geolocation hints

- IATA & ICAO airport codes
 - Paris Charles de Gaulle Airport: CDG, LFPG
- CLLI (Common Language Location Identifier)
 - Houston, Texas: HSTNTX
- UN/LOCODE (United Nations Location Code)
 - Berlin, Germany: DEBER
- Raw or partial city names
 - Irvine, irvn...

Ambiguities

be2334.ccr42.par01.atlas.cogentco.com

Airport code for Concord, CA

Paris, France or one of the 20 towns named Paris in the USA?

Salas Atlas, Spain

HLOC framework

- 1. Map code to cities (100km aggregation)
- 2. Extract location hints from reverse DNS names
- 3. Verify or falsify hints based on delay constraints

Match reduction

- Ignore cities below 100k inhabitants
- Ignore common words
 - tel (telecom), cpe (customer premises equipment)
 - Internet, Linux, static...
- Ignore ambiguous codes
 - lin ⇒ Milan (IATA), Illinois, Carolina, Dublin
- Ignore top and second-level domains
 - .com, cogentco.com

Hint validation

- 1. Falsify hint based on speed-of-light violation
 - Measure the latency from a landmark towards the target
 - If it is inferior to the minimal latency (at 0.66*c) towards the hint location, falsify the hint
- 2. Verify hint based on pin-point measurements
 - Find a RIPE Atlas probe close (< 1000km) to the hint location
 - Measure the latency between the probe and the hint location
 - If it is inferior to a tight bound on the latency (twice the distance at 0.66*c + 9ms), verify the hint

Evaluation — Dataset

- CAIDA ITDK (Internet Topology Data Kit)
 - IP addresses of routers (aliases) with their associated reverse DNS
 - 2.5M IPv4 router IPs and 146k IPv6 router IPs (in 2017)
- IPv4 filtering
 - - 14k invalid domains
 - 1M domains with no matches
 - 465k unresponsive addresses
 - ⇒ 961k remaining addresses/domains pairs
- IPv6 filtering
 - ⇒ 29k remaining addresses/domains pairs

Evaluation — DRoP, GeoLite, ip2location

TABLE V: Evaluation of location decisions by databases and DRoP against HLOC measurements: ip2location more accurate than GeoLite, DRoP frequently with "no data". All information-based approaches with a significant number of wrong decisions.

HLOC GeoLite				ip2location				DRoP				
	Location Dec.	n	Same	Possible	Wrong	Same	Poss.	Wrong	Same	Poss.	Wrong	No data
	Verified	45k	40.4%	15.6%	44.0%	76.6%	11.3%	12.1%	7.8%	0.1%	8.4%	83.7%
4	All falsified	417k	n/a ¹	100%	0%	n/a	100%	0%	n/a	n/a	2.2%	97.8%
Ē	No verified	499k	n/a	96.1%	3.9%	n/a	98.8%	1.2%	n/a	10.5%	4.1%	85.4%
	Timeout	465k	n/a	100%	n/a ²	n/a	100%	n/a	n/a	26.4%	n/a	73.6%
9,	Verified	5k		_		25.7%	10.6%	63.6%	33.7%	1.0%	1.8%	63.5%
	No verified	17k		_		n/a	74.2%	23.9%	n/a	25.5%	3.3%	71.2%

^{1:} With no verified HLOC match, other approaches can not have the same match. 2: With HLOC timeout, it is not possible to evaluate other approaches.

Evaluation — DRoP ground truth

TABLE VI: For DRoP's ground truth domains, we show performance for (a) DRoP's reported performance, (b) our reproduction of DRoP and its validation against latency measurements, and (c) HLOC-generated hints and their latency validation.

Domain	DRoP 2014 [18]					DRoP 2016 Reproduction					HLOC			
	$\overline{}$	Type	Match	TP ¹	$\overline{}$	Match	TP^1	Ver. ²	Fals. ²	Match	TP^1	Ver. ²	Fals. ²	
belwue.de	161	City	52%	86%	53	64%	65%	22	1	94%	64%	32	5	
cogentco.com	13,129	IATA	90%	99%	9,475	95%	26%	2,381	628	99%	23%	2,144	295	
digitalwest.net	111	IATA	49%	100%	47	49%	26%	6	0	100%	15%	. 7	2	
ntt.net	$2,\!584$	CLLI	96%	100%	$3,\!125$	54%	37%	622	5	99%	30%	937	148	
peak10.net	115	IATA	100%	100%	199	99%	9%	18	0	100%	9%	18	0	

^{1: %} of matches that are true positives 2: Total count of verified or falsified matches. "possible" and "time out" results not displayed.

Hints contribution

TABLE IV: IATA, GeoNames and CLLI codes provide 99% of verified hints.

Category	IATA	ICAO	FAA	UN/LO	GeoNames	CLLI
# Codes	8k	13k	20k	77k	32k	31k
Hints (100%) Verified Verified (%)	4.5M 32k .7%	209k 122 < .0%	472k 413 .1%	59k 120 < .0%	215k 13k 5.9%	167k 5k 2.8%

Takeaways

- Reverse DNS information is valuable, when present and containing geolocation information
 - ~60% of the interfaces in Diamond-Miner traceroutes have a reverse DNS name
- Reverse DNS information can be outdated or wrong, it should be verified with latency measurements

HLOC — Advantages

- The code is provided (https://github.com/tumi8/hloc)
- The code works
- It uses public datasets and public measurement platforms

HLOC — Limitations

- Anycast
 - Unlikely for routers
- Reverse DNS coverage
- Routing detours
 - Choose probes closer to AS
- Aggregation of cities in a 100km radius
- Ignore location hints for location < 100k inhabitants (only ~300 cities in the US)
- Validated only against DRoP and commercial databases on ITDK

Other works

Dan, Ovidiu, Vaibhav Parikh, and Brian D. Davison. "IP Geolocation through Reverse DNS." *ACM Transactions on Internet Technology (TOIT)* 22.1 (2021): 1-29.

- Use a ground truth of 67 million IP addresses obtained from Bing search logs where users opted-in to provide the device location
- Doesn't perform active measurements
- Claims to outperform other reverse DNS based techniques
 - Hard to reproduce since the dataset is private and the code doesn't work out-of-the-box (hardcoded paths, no documentation)
 - https://github.com/microsoft/ReverseDNSGeolocation

Discussion

Thanks for your attention :-)