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Introduction

- Medium Access Control (MAC) algorithms used to control access in wireless
networks

- MAC protocol preventing neighbors from transmitting simultaneously
(collision and loss of packets impossible)

- Maximal stability: all nodes in the network can transmit all arriving packets
for all arriving processes

- Centralized algorithms : MaxWeight/α-fair algorithms are known to be
maximally stable

- Need a centralized controller to make decisions
- Decentralized algorithms : Carrier Sense Multiple Access (CSMA, used in
IEEE 802.11)

- Nodes have a random back-off time and transmit if they don’t sense
another transmission
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Introduction

- Most results are known for saturated networks and cannot be reduced to
unsaturated networks

- In practice, the processes are not monotonous
- Development of queue-based algorithms which provide maximal stability, but
are very difficult to implement and lead to high delays

- Assume Standard CSMA:
(a) Each node does not know its neighbors
(b) Access procedure is the same for all nodes
(c) The node does not access the network if its queue length is empty
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Line and Circle Topologies

- N transmitter nodes in a circle or a line
- Ni (N ) is the neighborhood of node N :

Circle topology Line topology

Nc (i ) =


{N ,2} for i = 1

{N −1,1} for i = N

{i −1, i +1} else
Nl (i ) =


{2} for i = 1

{N −1} for i = N

{i −1, i +1} else
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Queuing Model

- All nodes have infinite buffer space. Time is slotted. Transmission time is
equal to 1

- Qi (n): queue size at node i at time n

- ξi (n): number of arrivals at node i at time n. (ξi (n) are i.i.d. with
E [ξi (n)] =λ

- Transmission priorities: neighbors cannot all transmit during the same time
slot (Medium Access).

- At each time slot, priorities {U1(n), . . . ,UN (n)} are allocated
- The node with priority 1 will transmit if its queue length is not zero
- Proceed by induction: the next-highest priority node transmits if no
node in its neighborhood is transmitting

- The procedure is repeated until no node can transmit
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Queuing Model

- Di (n): number of packet transmissions at queue i in time slot n

- Evolution of queue i length:

Qi+1(n +1) =Qi (n)−Di (n)+ξi (n)
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Parking constant on a line

- Transmission initiation process similar to the discrete-time parking problem

- Lk : expected number of departures in a line ok k non-empty nodes ->
expected number of cars parked in a parking lot of k slots.

- Lk
k : parking constant (or jamming density)

- Known results:
(

Ln
n

)
n≥3

is a non-increasing sequence and (see [?]):

Ln =
n∑

k=1
(−1)k+1 2k−1

k !
(n −k +1)
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Lemma
Lk:m expected number of departures from the k first nodes in a network of m
non-empty nodes. Then for all k ≤ m :

Lk:m ≤ Lk

Proof by induction. Write:

Lk:M = 1

M

k−1∑
i=0

 1︸︷︷︸
First node

+Li−2 +Lk−i−1:M−i−1︸ ︷︷ ︸
First k−1 nodes

+ Lk−1︸ ︷︷ ︸
Node k−1

+
M∑

i=k+2
Lk:i−2︸ ︷︷ ︸

Subsequent nodes


And:

Lk = 1

M

(
k∑

i=0
(1+Li−2 +Lk−i−1)+

M∑
i=k+1

Lk

)
Consequence:

Lk+m ≤ Lk +Lm
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System with reshuffling

- Ck : expected number of departures in a system of k non-empty nodes in a
circle

- Introduce reshuffling (3 versions)
- Version 1: All queues are reshuffled uniformly at random
- Version 2: All empty queues stay where they are, all non-empty queues
are reshuffled

- Version 3: All non-empty queues are reshuffled within each non-empty
segment

Theorem
For the line topology, the system with reshuffling is stable if λ< min{LN /N ,1/2}.
For the circle topology, the system is stable if λ<CN /N .

- Proof: if λ< min{LN /N ,1/2} for the line topology, or if λ<CN /N for the
circle topology, the average number of arrivals in any non-empty segment is
lower than the number of departures
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Foster-Lyapunov Theorem

Theorem (Foster, 1953)
Let X be a φ-irreducible discrete-time Markov chain. X is positive recurrent if and
only if there exists a finite set C , a Lyapunov function L and constants α,β> 0
such that:

∆V (ζ) ≡ E [L(X1)−L(X0)|X0 = ζ] ≤β1{ζ ∈C }−α1{ζ 6∈C }

- If the state space is RN , it is enough to prove that there exists K > 0 and
ε> 0 such that:

∆V (ζ) <−ε
whenever |ζ| > K

- Idea: find a suitable function L for the queuing network and deduce a
condition on λ for the system to be stable
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A Loose Stability Condition

Theorem

Let ξ be such that ξi (n) L∼ ξ. If λ< 3/8 and E[ξ2] <∞, the system is stable for
both topologies

- For the circle topology. Take:

L(x) =
N∑

i=1
(xi +xi+1)2

- Let Q(0) = (Q1(0), . . . ,QN (0)) be an initial condition

∆L(Q) =
N∑

i=1
E
[
(Qi +Qi+1 +ξi +ξi+1 −Di −Di+1)2 − (Qi +Qi+1)2]

≤
N∑

i=1

(
E
[
(ξi +ξi+1)2]+E[

(Di +Di+1)2])+2
N∑

i=1
(Qi +Qi+1)(2λ−E [Di +Di+1])
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A Loose Stability Condition

- Note that:

N∑
i=1

(
E
[
(ξi +ξi+1)2]+E[

(Di +Di+1)2])≤ 2
∑

i
E[ξ2

i ]+2Nλ2 +4N

- Bound the second term:

N∑
i=1

(Qi +Qi+1)(2λ−E[Di +Di+1]) =
N∑

i=1
Qi (4λ−E[Di−1]−2E[Di ]−E[Di+1]])

- Make a case study:
- Qi−1 =Qi+1 = 0: E[Di−1]+2E[Di ]+E[Di+1] = 2
- Qi−1 = 1 and Qi+1 = 0: E[Di−1]+2E[Di ]+E[Di+1] = 1+E[Di ] ≥ 3/2
- Qi−1 =Qi+1 = 1:

E[Di−1 +2E[Di ]+E[Di+1] = (E[Di−1 +E[Di ])+ (E[Di ]+E[Di+1])

≥ 3/4+3/4 = 3/2
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A Loose Stability Condition

- We combine the estimates:

∆L(Q) ≤∑
i
E[ξ2

i ]+2Nλ2 +4N︸ ︷︷ ︸
<∞

+2(4λ−3/2)
N∑

i=1
Qi

≤C + (8λ−3)
N∑

i=1
Qi

- We have ∆L(Q) <−ε if
∑N

i=1 Qi ≥ K with:

K = C +ε
3−8λ

and λ< 3

8
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A Loose Stability Condition

- For the line topology, we use:

L̂(x) =
N−1∑
i=1

(xi +xi+1)2

- We bound the drift:

∆L̂(Q) =
N−1∑
i=2

Qi (4λ−E[Di−1]−2E[Di ]−E[Di+1]])

+Q1(2λ−E[D1]−E[D2]︸ ︷︷ ︸
=−1

)+QN (2λ−E[DN−1]−E[DN ]︸ ︷︷ ︸
=−1

)

- Using the same arguments, the system is stable if λ< 3
8
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A Loose Stability Condition

- Probability of transmission of the node 2/N −1 in the line:
- N = 4: 3/8
- N = 5: 11/30

- We can prove that:

lim
n→∞P[Transmission of node 2] = 1−e−1 ≈ 0.3679

- Very well know results in Markov jump processes: the system is stable if λ< ν
Is the condition λ< 3

8 tight ?
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Fluid limits

- Introduced by Rybko and Stolyar in [?]. Idea: study the average over large
jumps in the state space

- Sequence of processes Qr (·) such that |Qr (0)| = r is fixed.
- Goal: study the behavior of

q̄(t ) = lim
r→∞

1

r
E
[|Qr (r t )|] (1)

Theorem (Dai, 1995, [?])
If the fluid limit model for a fixed queuing discipline is stable, i.e. there exists
T > 0 such that q̄(T ) = 0, then the Markov chain X describing the dynamics of the
network is positive Harris recurrent.

- Remark: the reciprocal is not true, fluid systems can be unstable and the
underlying Markov chain, stable
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Fluid limits

- Change the representation of the queueing network:
- Qr

i (t ) =Qr
i (btc) is the queue length at node i

- F r
i (t ) =∑

1≤n≤btc ξi (n) is the total number of arrivals at node i up to
time t

- H r
i (t ) is the total numbers of departures from node i up to time t

- Queue size at node i at time t :

Qr
i (t ) =Qr

i (0)+F r
i (t )−H r

i (t )

- s: occupancy state at node i at time t , u: ranking realization (assignation of
priorities)

- d =φ(s,u): transmission realization.
- Define Θ= {(s,u)} and Ψ= {(s,u,d)}

- Probability distribution on Θ : Ps (u,d) = 1
N !1{d =φ(s,u)}

- Gr
B (t ) =∑

1≤i≤btc1{(s,u,d) ∈ B}: number of time slots during which event
B ∈Ψ happened
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Fluid Scaled Process

Definition
A fluid limit is a collection of deterministic functions χ= [(qi , fi ,hi )1≤i≤N , (gB )B∈Ψ]
such that there exists a subsequence rn such that:[(

1

rn
Qrn

i (t ),
1

rn
F rn

i (t ),
1

rn
H rn

i (t )

)
1≤i≤N

,

(
1

rn
Grn

B (t )

)
B∈Ψ

]
→χ u.o.c.

- Temporal evolution of the fluid-scaled system:

q̄i (t ) = qi (0)+ f̄i (t )− h̄i (t ) = qi (0)+λt − ḡ{di=1}(t )

- Define a probability measure on Ψ:

πt (B) = d

dt
gB (t )
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Friends And Foes

- Nodes that are mutual friends have a higher probability of transmission,
nodes that are mutual foes have a lower probability of transmission

- Edge nodes have a higher probability of transmission
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Stability Condition on a Circle

- Goal: find ε> 0 such that, for any regular point t such that
∑N

i=1 q̄i (t ) > 0:

N∑
i=1

q̄ ′
i (t ) ≤−ε

- If for all i > 0, q̄i (t ) > 0:

q̄ ′
i (t ) =λ−πt ({di = 1}) =λ− CN

N

- (Cn/n) is a non-increasing sequence for even values of n, and non-decreasing
for odd values of n

- For even values n ≥ 4, Cn/n ≥ limn→Cn/n = 1/2(1−e−2) > 2/5 and for odd
values n ≥ 5, Cn/n >C5/5 = 2/5
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Stability Condition on a Circle

- If there is at least one i such that q̄i (t ) = 0

- Reduce the analysis to positive groups of size l : groups of nodes such that
q̄k+1, . . . q̄k+l such that q̄k (t ) = q̄k+l+1(t ) = 0 and q̄k+i (t ) > 0.

- We prove that for any positive group of size l ,
∑l

i=1 q̄ ′
k+i (t ) <−ε(l ) < 0

- Make a case study depending on the size of l :
- If l = 1, we get q̄ ′

k+1(t ) <λ+1/2+λ/4
- If l = 2, we get q̄ ′

k+1(t )+ q̄ ′
k+2(t ) < 5λ/2−1

- The same goes for l = 3
- If l ≥ 4, the worst occupancy state occurs in a segment of length 7 where
the middle node transmits, with probability is 179/420 > 2/5

- We thus have:
λ< 2/5 =⇒ The system is stable
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Stability Condition on a Circle

- Remind that CN = 1+LN−3, and thus, LN /N > 2/5

- If for all i , qi (t ) > 0:
N∑

i=1
q̄ ′

i (t ) = Nλ−LN

Which is negative if λ< 2
5

- Else: case study as before
- We have to take into account border nodes
- The same result holds:

λ< 2/5 =⇒ The system is stable
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Conclusion

For the circle topology:
- If λ>CN /N > 2/5, the system is always instable
- For N = 5, CN /N = 2/5 and the bound is tight, and

limN→∞CN /N = 1/2(1−e−2) ≈ 0.4323

- Stability if λ<CN /N is still an open question

For the line topology:
- Some nodes receive a throughput less than 2/5
- Not an intuitive result: need to look at the overall topology and not only
node throughput
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