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Introduction: graph clustering

By now, graph clustering is a very established research area.

Figure: From [Abbe 2017]

Focus on graphs whose nodes have geometric attributes.
Restrict to 2 communities. limiass
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minCut and spectral clustering methods
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Consider a graph G = (V,E). Let V =V, U V,. Then
Cut(V4, Vo) = #(edges between V4 and V)
Our task then is to find

arg min Cut(Vy, V; g
& (V1,V2) VA7 5

5 given the fact that clusters V4 and V; should be balanced.



Spectral clustering (SC)
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Consider the vector x = (x;) € {—1,1}" corresponding to the partition

V=vVuVW:
1, ifiewv
Xi = .
-1, ifieWv,
Take the adjacency matrix A = (Aj), the diagonal matrix D, where
Dji = degv; = Zj Ajj, and the graph Laplacian L = D — A. Then

Cut(Vr, V2) = Z Aj = % Z Aji(xi — x;)* o x' Lx.

i€EV1,jEV2 i.j€ln]

Continuous relaxation:

argmin  Cut(V4, Vo) = argmin x' Lx — argmin x Lx
[Vi|=|Va|=n/2 xe{-1,1}" xER"
xL1, l1x|5=v/n
x11,

Eigenvectors of Laplacian matrix:
> First eigenvector of L is v(Y = (1,...,1)7 with \; = 0;
» Second eigenvector or Fiedler vector v® provides the squtioZoimngu .
relaxed minimum cut problem;
» Cluster node i according to the sign of v,.(2).



Spectral Clustering on geometric graphs: drawbacks and
solution
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Soft Geometric Block Model (SGBM)
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Model parameters

number of nodes n, geometric dimension d and two
measurables functions Fi,, Fou @ T¢ — [0, 1].

Model definition
» Set of nodes V = {1,...,n};
» Each node i has random position X; on the torus TY;

» Each node i gets randomly community label o; € {—1,1};
» Each pair of nodes (i, ) is connected with probability

) Fa(Xi = X)) if 0j = 0;
le B Fout (XI - XI) if gi 7& Uj - s bt
V2077 e



SGBM important particular cases

» An SGBM where F,(x) = pin and Foui(x) = pout is an
instance of Stochastic Block Model (SBM).
Holland, P.W., Laskey, K.B., & Leinhardt, S. (1983).
Stochastic blockmodels: First steps. Social Networks.

» An SGBM where F,(x) = 1(|x] < nn),
Fout(x) = 1(|x| < rout) with ry, > roy is an instance of
Geometric Block Model (GBM) introduced in
Galhotra, S., Mazumdar, A., Pal, S., & Saha, B. (2018).
The geometric block model. Proceedings of AAAI.

» Euclidean random graphes with known node locations
have been studied in
Abbe, E., Baccelli, F., & Sankararaman, A. (2021). _
Community detection on Euclidean random graphuw
Information and Inference.
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SGBM problem formulation

Inference problem
Estimate the latent node labeling o given the observation of A
(graph), and possibly the knowledge of Fiy,, Fous.

Specifically, defining the loss of an estimator 7 as
1
¢(0,0) = =min 1(o; #mo0;),

n €Sy “—
1

we shall be interested in weak consistency

Ve>0: lim P({(0,0)>¢€) = 0,
n—oo

and strong consistency

lim P(¢(o,0) >0) = 0. &iﬁ.m,m,mmm

n—o0
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Example: GBM

Geometric Block Model

Consider d =1 and

Fin(x) = 1(|x] < fn), Four(x) = 1(|x| < four) with fixed
lin > fout-
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Spectral clustering on the SGBM (1)

Fiedler vector produces geometric partitioning! /5755
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Spectral clustering on the SGBM (2)

The eigenvector v, associated with A4 (the fourth smallest
eigenvalue) gives the partition into 4 regions. P
The eigenvector vy divides the circle into 6 regions, anﬁW

on... Nothing useful?
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Spectral clustering on the SGBM (3)

Then suddenly the eigenvector viy gives 87% accuracy!

It appears that this e|ge'nvector contains useful mformamw
about the true community structure.
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How to choose the best eigenvector?

Suppose that nodes V; = {1,...,n/2} and
Vo={n/2+1,... n}.
The ideal vector for recovery is then

v =(1,...,1,-1,...,—-1)T.
—_—— ————
n/2 n/2
Denote p;, = de Fin(x)dx — average intra-cluster edge
density
Hout de out(X)dx — average inter-cluster edge
density.

v, is an “approximate” eigenvector of EA, associated to A\,
such that

n/2

A EZA,J—E Z Aj = “%’“"-‘)’”’;zm,m

j=n/2+41
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Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):
1. Calculate the eigenvalues of the adjacency matrix A;

2. Take the eigenvector ¥ associated with the eigenvalue )
closest to A\ = (pin — fous)n/2;

3. Let g, =sign(v;) for i =1,...,n.

Theorem (HOSC weak consistency)

In the GBM, for almost all choices of (fiy, fout), we have with
high probability ; = o; for all but o(n) nodes i.

P d
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Higher-order spectral clustering algorithm

Main steps of the proof:

1. Show that A\, belong to the limiting spectrum;
2. Show that \, is isolated from other limiting eigenvalues;

3. Show that V ~ v, = (1,...,1,-1,...,—-1)7
when A\ =~ \,.

P d
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Limiting spectrum of SGBM

For k € Z9 and F : T — R we define the Fourier transform
Fk) = / F(x)e 27 g
Td

and assume that F;,(0), Fou(0) are equal to the Fourier series
of Fin(+), Fout(+) evaluated at 0.
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Limiting spectrum of SGBM

Theorem
Let \1,..., A\, be the eigenvalues of A, and

Hn = Z 5)\,-/n
i=1

the spectral measure of the matrix %A. Then, for all Borel sets
B with (0B) =0 and 0 ¢ B, a.s.,

lim 4u,(B) = pu(B),

n—o0
where 1 is the following measure:

o= E :5ﬁn(k)+fou W0 0 R,0-Fa ) o
Kkezd fh ft &ZW
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Limiting spectrum of SGBM

Good news: A, = Hrfeutn belongs to the limiting spectrum.
(Recall i, = Fin(0) and pion = Fout(0).)

The proof is based on the moment method and is a
generalization of

Bordenave, C. (2008). Eigenvalues of Euclidean random
matrices. Random Structures & Algorithms, 33(4), 515-532.

to the block model, where we calculate

Epa(t™) = nim Y BN = nimETrAm = nimE > 1A
i=1

agln]m j=1

and then use Talagrand’s concentration inequality and 7" g racsnien
. & q y &z'zca,—-
Borel-Cantelli lemma .
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Separation of \,

Main steps of the proof:

1. Show that A\, belong to the limiting spectrum;
2. Show that A, is isolated from other limiting eigenvalues;

3. Show that V ~ v, = (1,...,1,-1,...,—-1)7
when A\ =~ \,.
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Separation of \,

Proposition
Consider the adjacency matrix A of an SGBM and assume
that:
Fin(K) + Fous(k) # Fin(0) — Fou(0),  Vk € 29,
Fin(k) = Fou(k) # Fin(0) = Fous(0), Yk € Z\{0}.

with Fm( ) + Fout( ). Then, the eigenvalue of A the closest
to Mn is of multiplicity one. Moreover, there exists
€ > 0 such that for large enough n every other eigenvalue is at
a distance at least en.

Remark In case of the GBM, we showed that the above .
conditions hold true for all but a zero Lebesgue measurééw

parameters ry,, fout-
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Closeness of v to v,

Main steps of the proof:

1. Show that )\, belong to the limiting spectrum;
2. Show that \, is isolated from other limiting eigenvalues;

3. Show that V ~ v, = (1,...,1,-1,...,-1)7
when A =~ \,.
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Closeness of v to v,
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The following result was very useful to demonstrate the
closeness of v to v,.

Theorem (Kahan-Parlett-Jiang)

Let A be a real symmetric matrix. If X is the eigenvalue of A
closest to p(v) = ~ A" , 0 Is the separation of p from the next
closest eigenvalue of A and v is the eigenvector corresponding

to A\, then

: v AV = pv|)
|sinZ(v, V)| < ———=
[v]|26
In our case, this leads to
- - C
v, — V]|2 < V2]sin Z(w, V)| £ ———= w.h.

n/ Iog( n) ',..f-mmqm,,,,.m,,m,,,)



Numerical results
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Numerical experiments (1)
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Figure: Evolution of accuracy (blue curve) with respect to ry, for a
GBM with n = 3000 and ry,t = 0.06. The red curve show thg
index of the ideal eigenvector. &Zw
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Numerical experiments (2)

Evolution of accuracy,

for n = 3000 and rout = 0.04
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Figure: Accuracy obtained on 1-dimensional GBM for different
clustering methods. Results are averaged over 50 realizations, and
error bars show the standard error. Comparison with the methods

of (Galhotra et al, 2018,2019). F 7l —
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Real data sets

» Wikivitals: links between wikipedia articles;
cluster sizes (1715,1752)

» DBLP: co-authorship network between scientists;
cluster sizes (6562,6764)
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Figure: Accuracy per eigenvector rank: Wikivitals 2l —
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Real data sets
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Figure: Accuracy per eigenvector rank: DBLP
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Conclusion & future work
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Conclusion

Takeaway message:

If you use spectral clustering methods, check higher-order
eigenvectors, they can be more effective!

Especially if you deal with geometric attributes.

P d
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Directions of further research

Future work:

» More clusters
How to choose the eigenvector(s) if we have K > 2
clusters?
» Sparse regime
The current proof does not work if the average degree is
o(n).
» Weighted graphs
The results can easily be transferred to models with
weighted edges instead of probability of edge appearance.
» Model parameters

Is it possible to determine i, and fioy from the observed
graph? R —
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Thank you for your attention!

Any questions?

informatiques #Pmathématiques
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