Higher-order spectral clustering for geometric graphs

K. Avrachenkov¹ A. Bobu¹ M. Dreveton¹

¹ Inria Sophia-Antipolis, France

LINCS seminar, 15 September 2021

Journal of Fourier Analysis and Applications, 27:22, 2021. arXiv:2009.11353

A D > A P > A D > A D >

Introduction: graph clustering

By now, graph clustering is a very established research area.

Figure: From [Abbe 2017]

Focus on graphs whose nodes have geometric attributes. Restrict to 2 communities. Introduction

minCut and spectral clustering methods

Spectral Clustering on geometric graphs: drawbacks and solution

Numerical results

Conclusion & future work

・ロト ・ 『ト・モート・モート

Introduction

minCut and spectral clustering methods

Spectral Clustering on geometric graphs: drawbacks and solution

Numerical results

Conclusion & future work

э

・ロト ・ 理ト ・ ヨト ・ ヨト

Intuition

Consider a graph G = (V, E). Let $V = V_1 \sqcup V_2$. Then $Cut(V_1, V_2) = #(edges between V_1 and V_2)$ Our task then is to find

 $_{5/33}$ given the fact that clusters V_1 and V_2 should be balanced.

Spectral clustering (SC)

Consider the vector $x = (x_i) \in \{-1, 1\}^n$ corresponding to the partition $V = V_1 \sqcup V_2$:

$$x_i = egin{cases} 1, & ext{if } i \in V_1 \ -1, & ext{if } i \in V_2 \end{cases}.$$

Take the adjacency matrix $A = (A_{ij})$, the diagonal matrix D, where $D_{ii} = \deg v_i = \sum_i A_{ij}$, and the graph Laplacian L = D - A. Then

$$Cut(V_1, V_2) = \sum_{i \in V_1, j \in V_2} A_{ij} = \frac{1}{4} \sum_{i, j \in [n]} A_{ij} (x_i - x_j)^2 \propto x^T L x.$$

Continuous relaxation:

$$\underset{V_1|=|V_2|=n/2}{\operatorname{arg\,min}} \underset{x \in \{-1,1\}^n}{\operatorname{arg\,min}} \underset{x \perp 1_n}{\operatorname{arg\,min}} x^T L x \longrightarrow \underset{\substack{x \in \mathbb{R}^n \\ ||x||_2^2 = \sqrt{n} \\ x \perp 1_n}}{\operatorname{arg\,min}} x^T L x$$

Eigenvectors of Laplacian matrix:

- First eigenvector of L is $v^{(1)} = (1, \ldots, 1)^T$ with $\lambda_1 = 0$;
- Second eigenvector or Fiedler vector $v^{(2)}$ provides the solution to the relaxed minimum cut problem;
- Cluster node *i* according to the sign of $v_i^{(2)}$.

Introduction

minCut and spectral clustering methods

Spectral Clustering on geometric graphs: drawbacks and solution

Numerical results

Conclusion & future work

・ロト ・四ト ・ヨト ・ヨト

Model parameters

number of nodes *n*, geometric dimension *d* and two measurables functions $F_{in}, F_{out} : \mathbb{T}^d \to [0, 1]$.

Model definition

- Set of nodes $V = \{1, \ldots, n\};$
- Each node i has random position X_i on the torus T^d;
- Each node *i* gets randomly community label $\sigma_i \in \{-1, 1\}$;
- Each pair of nodes (i, j) is connected with probability

$$p_{ij} = \begin{cases} F_{in} (X_i - X_j) & \text{if } \sigma_i = \sigma_j \\ F_{out} (X_i - X_j) & \text{if } \sigma_i \neq \sigma_j \end{cases}$$

イロト 不得 トイヨト イヨト

SGBM important particular cases

- An SGBM where F_{in}(x) = p_{in} and F_{out}(x) = p_{out} is an instance of Stochastic Block Model (SBM).
 Holland, P.W., Laskey, K.B., & Leinhardt, S. (1983).
 Stochastic blockmodels: First steps. Social Networks.
- An SGBM where F_{in}(x) = 1(|x| ≤ r_{in}), F_{out}(x) = 1(|x| ≤ r_{out}) with r_{in} > r_{out} is an instance of Geometric Block Model (GBM) introduced in

Galhotra, S., Mazumdar, A., Pal, S., & Saha, B. (2018). The geometric block model. *Proceedings of AAAI*.

Euclidean random graphes with known node locations have been studied in

Abbe, E., Baccelli, F., & Sankararaman, A. (2021). Community detection on Euclidean random graphs Information and Inference.

SGBM problem formulation

Inference problem

Estimate the latent node labeling σ given the observation of A (graph), and possibly the knowledge of $F_{\rm in}$, $F_{\rm out}$.

Specifically, defining the loss of an estimator $\widehat{\sigma}$ as

$$\ell(\sigma,\widehat{\sigma}) = \frac{1}{n} \min_{\pi \in S_2} \sum_i \mathbb{1} \left(\sigma_i \neq \pi \circ \widehat{\sigma}_i \right),$$

we shall be interested in weak consistency

$$\forall \epsilon > 0 : \lim_{n \to \infty} \mathbb{P}\left(\ell\left(\sigma, \widehat{\sigma}\right) > \epsilon\right) = 0,$$

and strong consistency

$$\lim_{n\to\infty}\mathbb{P}\left(\ell\left(\sigma,\widehat{\sigma}\right)>0\right) = 0.$$

/

(a)

Example: GBM

Geometric Block Model Consider d = 1 and $F_{in}(x) = 1(|x| \le r_{in}), F_{out}(x) = 1(|x| \le r_{out})$ with fixed $r_{in} > r_{out}$.

Spectral clustering on the SGBM (1)

Fiedler vector produces geometric partitioning!

Spectral clustering on the SGBM (2)

The eigenvector v_4 associated with λ_4 (the fourth smallest eigenvalue) gives the partition into 4 regions. The eigenvector v_6 divides the circle into 6 regions, and so regions on... Nothing useful?

Spectral clustering on the SGBM (3)

Then suddenly the eigenvector v_{10} gives 87% accuracy!

It appears that this eigenvector contains useful information about the true community structure.

How to choose the best eigenvector?

Suppose that nodes
$$V_1 = \{1, ..., n/2\}$$
 and
 $V_2 = \{n/2 + 1, ..., n\}$.
The ideal vector for recovery is then
 $v_* = (\underbrace{1, ..., 1}_{n/2}, \underbrace{-1, ..., -1}_{n/2})^T$.
Denote $\mu_{in} = \int_{\mathbb{T}^d} F_{in}(x) dx$ — average intra-cluster edge
density
 $\mu_{out} = \int_{\mathbb{T}^d} F_{out}(x) dx$ — average inter-cluster edge

 $\mu_{\text{out}} = \int_{\mathbf{T}^d} F_{out}(x) dx$ — average inter-cluster edge density.

 \textit{v}_{*} is an "approximate" eigenvector of $\mathbb{E}\textit{A},$ associated to λ_{*} such that

$$\lambda_* = \mathbb{E} \sum_{j=1}^{n/2} A_{ij} - \mathbb{E} \sum_{j=n/2+1}^n A_{ij} = \frac{(\mu_{in} - \mu_{out})n}{2}$$

Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):

- 1. Calculate the eigenvalues of the adjacency matrix A;
- 2. Take the eigenvector $\tilde{\nu}$ associated with the eigenvalue $\tilde{\lambda}$ closest to $\lambda_* = (\mu_{\rm in} \mu_{\rm out})n/2$;
- 3. Let $\widehat{\sigma}_i = \operatorname{sign}(\widetilde{v}_i)$ for $i = 1, \ldots, n$.

Theorem (HOSC weak consistency) In the GBM, for almost all choices of (r_{in}, r_{out}) , we have with high probability $\hat{\sigma}_i = \sigma_i$ for all but o(n) nodes *i*.

(日)

Main steps of the proof:

- 1. Show that λ_* belong to the limiting spectrum;
- 2. Show that λ_* is isolated from other limiting eigenvalues;
- 3. Show that $\tilde{v} \approx v_* = (1, \dots, 1, -1, \dots, -1)^T$ when $\tilde{\lambda} \approx \lambda_*$.

◆□ → ◆問 → ◆臣 → ◆臣 → □臣

For $k \in \mathbb{Z}^d$ and $F : \mathbf{T}^d \to \mathbb{R}$ we define the Fourier transform

$$\widehat{F}(k) = \int_{\mathbf{T}^d} F(x) e^{-2i\pi \langle k,x \rangle} dx$$

and assume that $F_{in}(0)$, $F_{out}(0)$ are equal to the Fourier series of $F_{in}(\cdot)$, $F_{out}(\cdot)$ evaluated at 0.

<ロ> <四> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Limiting spectrum of SGBM

Theorem Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A, and

$$\mu_n = \sum_{i=1}^n \delta_{\lambda_i/n}$$

the spectral measure of the matrix $\frac{1}{n}A$. Then, for all Borel sets *B* with $\mu(\partial B) = 0$ and $0 \notin \overline{B}$, a.s.,

$$\lim_{n\to\infty}\mu_n(B)=\mu(B),$$

where μ is the following measure:

$$\mu = \sum_{k \in \mathbb{Z}^d} \delta_{\frac{\widehat{F}_{in}(k) + \widehat{F}_{out}(k)}{2}} + \delta_{\frac{\widehat{F}_{in}(k) - \widehat{F}_{out}(k)}{2}}.$$

Limiting spectrum of SGBM

Good news: $\lambda_* = \frac{\mu_{\text{in}} - \mu_{\text{out}}}{2}n$ belongs to the limiting spectrum. (Recall $\mu_{\text{in}} = \widehat{F}_{\text{in}}(0)$ and $\mu_{\text{out}} = \widehat{F}_{\text{out}}(0)$.)

The proof is based on the moment method and is a generalization of

Bordenave, C. (2008). Eigenvalues of Euclidean random matrices. *Random Structures & Algorithms*, 33(4), 515-532. to the block model, where we calculate

$$\mathbb{E}\mu_n(t^m) = \frac{1}{n^m} \sum_{i=1}^n \mathbb{E}\lambda_i^m = \frac{1}{n^m} \mathbb{E}\mathsf{Tr}A^m = \frac{1}{n^m} \mathbb{E}\sum_{\alpha \in [n]^m} \prod_{j=1}^m A_{i_j, i_{j+1}}$$

and then use Talagrand's concentration inequality and Borel-Cantelli lemma . Main steps of the proof:

- 1. Show that λ_* belong to the limiting spectrum;
- 2. Show that λ_* is isolated from other limiting eigenvalues;
- 3. Show that $\tilde{v} \approx v_* = (1, \dots, 1, -1, \dots, -1)^T$ when $\tilde{\lambda} \approx \lambda_*$.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト 三 臣

Separation of λ_*

Proposition

Consider the adjacency matrix A of an SGBM and assume that:

$$egin{aligned} \widehat{F}_{ ext{in}}(k) + \widehat{F}_{ ext{out}}(k)
eq \widehat{F}_{ ext{in}}(0) - \widehat{F}_{ ext{out}}(0), & orall k \in \mathbb{Z}^d, \ \widehat{F}_{ ext{in}}(k) - \widehat{F}_{ ext{out}}(k)
eq \widehat{F}_{ ext{in}}(0) - \widehat{F}_{ ext{out}}(0), & orall k \in \mathbb{Z}^d igle \{0\}. \end{aligned}$$

with $\widehat{F}_{in}(0) \neq \widehat{F}_{out}(0)$. Then, the eigenvalue of A the closest to $\frac{\widehat{F}_{in}(0) - \widehat{F}_{out}(0)}{2}n$ is of multiplicity one. Moreover, there exists $\epsilon > 0$ such that for large enough n every other eigenvalue is at a distance at least ϵn .

Remark In case of the GBM, we showed that the above conditions hold true for all but a zero Lebesgue measure set of r_{in} , r_{out} . Main steps of the proof:

- 1. Show that λ_* belong to the limiting spectrum;
- 2. Show that λ_* is isolated from other limiting eigenvalues;
- 3. Show that $\tilde{v} \approx v_* = (1, \dots, 1, -1, \dots, -1)^T$ when $\tilde{\lambda} \approx \lambda_*$.

Closeness of \tilde{v} to v_*

The following result was very useful to demonstrate the closeness of \tilde{v} to v_* .

Theorem (Kahan-Parlett-Jiang)

Let A be a real symmetric matrix. If $\tilde{\lambda}$ is the eigenvalue of A closest to $\rho(\mathbf{v}) = \frac{\mathbf{v}^T A \mathbf{v}}{\mathbf{v}^T \mathbf{v}}$, δ is the separation of ρ from the next closest eigenvalue of A and $\tilde{\mathbf{v}}$ is the eigenvector corresponding to $\tilde{\lambda}$, then

$$|\sin \angle (\mathbf{v}, \widetilde{\mathbf{v}})| \le \frac{\|A\mathbf{v} - \rho\mathbf{v}\|_2}{\|\mathbf{v}\|_2\delta}$$

In our case, this leads to

$$\|v_* - \widetilde{v}\|_2 \leq \sqrt{2} |\sin \angle (v_*, \widetilde{v})| \leq \frac{C}{\sqrt{n/\log(n)}} \quad w.h.p.$$

(日)

Introduction

minCut and spectral clustering methods

Spectral Clustering on geometric graphs: drawbacks and solution

Numerical results

Conclusion & future work

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Numerical experiments (1)

Figure: Evolution of accuracy (blue curve) with respect to r_{in} , for a GBM with n = 3000 and $r_{out} = 0.06$. The red curve show the index of the ideal eigenvector.

Numerical experiments (2)

Figure: Accuracy obtained on 1-dimensional GBM for different clustering methods. Results are averaged over 50 realizations, and error bars show the standard error. Comparison with the methods of (Galhotra *et al*, 2018,2019).

Real data sets

- Wikivitals: links between wikipedia articles; cluster sizes (1715,1752)
- DBLP: co-authorship network between scientists; cluster sizes (6562,6764)

Figure: Accuracy per eigenvector rank: DBLP

Introduction

minCut and spectral clustering methods

Spectral Clustering on geometric graphs: drawbacks and solution

Numerical results

Conclusion & future work

・ロト ・ 理ト ・ ヨト ・ ヨト

Takeaway message:

If you use spectral clustering methods, check higher-order eigenvectors, they can be more effective!

Especially if you deal with geometric attributes.

ヘロト ヘロト ヘヨト ヘヨト

Directions of further research

Future work:

More clusters

How to choose the eigenvector(s) if we have K > 2 clusters?

Sparse regime

The current proof does not work if the average degree is o(n).

Weighted graphs

The results can easily be transferred to models with weighted edges instead of probability of edge appearance.

Model parameters

Is it possible to determine μ_{in} and μ_{out} from the observed graph?

・ロト ・ 同ト ・ ヨト ・ ヨト

Thank you for your attention!

Any questions?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ