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Introduction: graph clustering

By now, graph clustering is a very established research area.

Figure: From [Abbe 2017]

Focus on graphs whose nodes have geometric attributes.
Restrict to 2 communities.
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Intuition

Consider a graph G = (V ,E ). Let V = V1 t V2. Then

Cut(V1,V2) = #(edges between V1 and V2)

Our task then is to find

arg min
V1,V2

Cut(V1,V2)

given the fact that clusters V1 and V2 should be balanced.5/33



Spectral clustering (SC)

Consider the vector x = (xi ) ∈ {−1, 1}n corresponding to the partition

V = V1 t V2:

xi =

{
1, if i ∈ V1

−1, if i ∈ V2

.

Take the adjacency matrix A = (Aij), the diagonal matrix D, where

Dii = degvi =
∑

j Aij , and the graph Laplacian L = D − A. Then

Cut(V1,V2) =
∑

i∈V1,j∈V2

Aij =
1

4

∑
i,j∈[n]

Aij(xi − xj)
2 ∝ xTLx .

Continuous relaxation:

argmin
|V1|=|V2|=n/2

Cut(V1,V2) = argmin
x∈{−1,1}n

x⊥1n

xTLx −→ argmin
x∈Rn

||x||22=
√
n

x⊥1n

xTLx

Eigenvectors of Laplacian matrix:
I First eigenvector of L is v (1) = (1, . . . , 1)T with λ1 = 0;
I Second eigenvector or Fiedler vector v (2) provides the solution to the

relaxed minimum cut problem;
I Cluster node i according to the sign of v

(2)
i .
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Soft Geometric Block Model (SGBM)

Model parameters
number of nodes n, geometric dimension d and two
measurables functions Fin,Fout : Td → [0, 1].

Model definition

I Set of nodes V = {1, . . . , n};
I Each node i has random position Xi on the torus Td ;

I Each node i gets randomly community label σi ∈ {−1, 1};
I Each pair of nodes (i , j) is connected with probability

pij =

{
Fin (Xi − Xj) if σi = σj

Fout (Xi − Xj) if σi 6= σj
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SGBM important particular cases

I An SGBM where Fin(x) = pin and Fout(x) = pout is an
instance of Stochastic Block Model (SBM).

Holland, P.W., Laskey, K.B., & Leinhardt, S. (1983).
Stochastic blockmodels: First steps. Social Networks.

I An SGBM where Fin(x) = 1(|x | ≤ rin),
Fout(x) = 1(|x | ≤ rout) with rin > rout is an instance of
Geometric Block Model (GBM) introduced in

Galhotra, S., Mazumdar, A., Pal, S., & Saha, B. (2018).
The geometric block model. Proceedings of AAAI.

I Euclidean random graphes with known node locations
have been studied in

Abbe, E., Baccelli, F., & Sankararaman, A. (2021).
Community detection on Euclidean random graphs.
Information and Inference.
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SGBM problem formulation

Inference problem
Estimate the latent node labeling σ given the observation of A
(graph), and possibly the knowledge of Fin,Fout.

Specifically, defining the loss of an estimator σ̂ as

` (σ, σ̂) =
1

n
min
π∈S2

∑
i

1 (σi 6= π ◦ σ̂i) ,

we shall be interested in weak consistency

∀ε > 0 : lim
n→∞

P (` (σ, σ̂) > ε) = 0,

and strong consistency

lim
n→∞

P (` (σ, σ̂) > 0) = 0.
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Example: GBM

Geometric Block Model
Consider d = 1 and
Fin(x) = 1(|x | ≤ rin), Fout(x) = 1(|x | ≤ rout) with fixed
rin > rout.
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Spectral clustering on the SGBM (1)

Fiedler vector produces geometric partitioning!
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Spectral clustering on the SGBM (2)

The eigenvector v4 associated with λ4 (the fourth smallest
eigenvalue) gives the partition into 4 regions.
The eigenvector v6 divides the circle into 6 regions, and so
on... Nothing useful?
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Spectral clustering on the SGBM (3)

Then suddenly the eigenvector v10 gives 87% accuracy!

It appears that this eigenvector contains useful information
about the true community structure.
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How to choose the best eigenvector?

Suppose that nodes V1 = {1, . . . , n/2} and
V2 = {n/2 + 1, . . . , n}.
The ideal vector for recovery is then
v∗ = (1, . . . , 1︸ ︷︷ ︸

n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

)T .

Denote µin =
∫
Td Fin(x)dx — average intra-cluster edge

density
µout =

∫
Td Fout(x)dx — average inter-cluster edge

density.

v∗ is an “approximate” eigenvector of EA, associated to λ∗
such that

λ∗ = E
n/2∑
j=1

Aij − E
n∑

j=n/2+1

Aij =
(µin − µout)n

2
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Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):

1. Calculate the eigenvalues of the adjacency matrix A;

2. Take the eigenvector ṽ associated with the eigenvalue λ̃
closest to λ∗ = (µin − µout)n/2;

3. Let σ̂i = sign(ṽi) for i = 1, . . . , n.

Theorem (HOSC weak consistency)
In the GBM, for almost all choices of (rin, rout), we have with
high probability σ̂i = σi for all but o(n) nodes i .

16/33



Higher-order spectral clustering algorithm

Main steps of the proof:

1. Show that λ∗ belong to the limiting spectrum;

2. Show that λ∗ is isolated from other limiting eigenvalues;

3. Show that ṽ ≈ v∗ = (1, . . . , 1,−1, . . . ,−1)T

when λ̃ ≈ λ∗.
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Limiting spectrum of SGBM

For k ∈ Zd and F : Td → R we define the Fourier transform

F̂ (k) =

∫
Td

F (x)e−2iπ〈k,x〉 dx

and assume that Fin(0),Fout(0) are equal to the Fourier series
of Fin(·),Fout(·) evaluated at 0.
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Limiting spectrum of SGBM

Theorem
Let λ1, . . . , λn be the eigenvalues of A, and

µn =
n∑

i=1

δλi/n

the spectral measure of the matrix 1
n
A. Then, for all Borel sets

B with µ (∂B) = 0 and 0 6∈ B̄, a.s.,

lim
n→∞

µn(B) = µ(B),

where µ is the following measure:

µ =
∑
k∈Zd

δ F̂in(k)+F̂out(k)

2

+ δ F̂in(k)−F̂out(k)

2

.
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Limiting spectrum of SGBM

Good news: λ∗ = µin−µout
2

n belongs to the limiting spectrum.

(Recall µin = F̂in(0) and µout = F̂out(0).)

The proof is based on the moment method and is a
generalization of

Bordenave, C. (2008). Eigenvalues of Euclidean random
matrices. Random Structures & Algorithms, 33(4), 515-532.

to the block model, where we calculate

Eµn(tm) =
1

nm

n∑
i=1

Eλmi =
1

nm
ETrAm =

1

nm
E

∑
α∈[n]m

m∏
j=1

Aij ,ij+1

and then use Talagrand’s concentration inequality and
Borel-Cantelli lemma .
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Separation of λ∗

Main steps of the proof:

1. Show that λ∗ belong to the limiting spectrum;

2. Show that λ∗ is isolated from other limiting eigenvalues;

3. Show that ṽ ≈ v∗ = (1, . . . , 1,−1, . . . ,−1)T

when λ̃ ≈ λ∗.
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Separation of λ∗

Proposition
Consider the adjacency matrix A of an SGBM and assume
that:

F̂in(k) + F̂out(k) 6= F̂in(0)− F̂out(0), ∀k ∈ Zd ,

F̂in(k)− F̂out(k) 6= F̂in(0)− F̂out(0), ∀k ∈ Zd\{0}.

with F̂in(0) 6= F̂out(0). Then, the eigenvalue of A the closest

to F̂in(0)−F̂out(0)
2

n is of multiplicity one. Moreover, there exists
ε > 0 such that for large enough n every other eigenvalue is at
a distance at least εn.

Remark In case of the GBM, we showed that the above
conditions hold true for all but a zero Lebesgue measure set of
parameters rin, rout.
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Closeness of ṽ to v∗

Main steps of the proof:

1. Show that λ∗ belong to the limiting spectrum;

2. Show that λ∗ is isolated from other limiting eigenvalues;

3. Show that ṽ ≈ v∗ = (1, . . . , 1,−1, . . . ,−1)T

when λ̃ ≈ λ∗.
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Closeness of ṽ to v∗

The following result was very useful to demonstrate the
closeness of ṽ to v∗.

Theorem (Kahan-Parlett-Jiang)
Let A be a real symmetric matrix. If λ̃ is the eigenvalue of A
closest to ρ(v) = vTAv

vT v
, δ is the separation of ρ from the next

closest eigenvalue of A and ṽ is the eigenvector corresponding
to λ̃, then

| sin∠(v , ṽ)| ≤ ‖Av − ρv‖2
‖v‖2δ

.

In our case, this leads to

‖v∗ − ṽ‖2 ≤
√

2 | sin∠(v∗, ṽ)| ≤ C√
n/ log(n)

w . h. p.
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Numerical experiments (1)
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Figure: Evolution of accuracy (blue curve) with respect to rin, for a
GBM with n = 3000 and rout = 0.06. The red curve show the
index of the ideal eigenvector.
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Numerical experiments (2)
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Figure: Accuracy obtained on 1-dimensional GBM for different
clustering methods. Results are averaged over 50 realizations, and
error bars show the standard error. Comparison with the methods
of (Galhotra et al, 2018,2019).
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Real data sets

I Wikivitals: links between wikipedia articles;
cluster sizes (1715,1752)

I DBLP: co-authorship network between scientists;
cluster sizes (6562,6764)
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Figure: Accuracy per eigenvector rank: Wikivitals
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Real data sets
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Figure: Accuracy per eigenvector rank: DBLP
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Conclusion

Takeaway message:
If you use spectral clustering methods, check higher-order
eigenvectors, they can be more effective!

Especially if you deal with geometric attributes.
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Directions of further research

Future work:

I More clusters
How to choose the eigenvector(s) if we have K > 2
clusters?

I Sparse regime
The current proof does not work if the average degree is
o(n).

I Weighted graphs
The results can easily be transferred to models with
weighted edges instead of probability of edge appearance.

I Model parameters
Is it possible to determine µin and µout from the observed
graph?
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Thank you for your attention!

Any questions?
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