


git 101



Overview

git by itself
git in team



git by itself



What problems does git solve?

- Distributed Social Coding
- Snapshots of your code (Version control)
- Try out new idea easily (Branches)

http://tom.preston-werner.com/2009/05/19/the
-git-parable.html 

http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html


What problems does git help to solve?

- Continuous integration
- Agile workflow
- Open Source in general



How does git works on your computer?

- git init / git clone
- git persists its state in 

.git/
- all git commands 

interacts with those files
- If this folder is gone, so is 

your history



Visualizing git and branching

- http://git-school.github.io/visualizing-git/
- https://learngitbranching.js.org 

http://git-school.github.io/visualizing-git/
https://learngitbranching.js.org


How to communicate with git?

http://ndpsoftware.com/git-cheatsheet.html



General best practices on git

- Know your commits. It is 
your work, your craft.

- Don’t commit everything 
you are modifying

- add -p is your friend
- Write meaningful 

commit messages
- Easier to understand 

during peer reviews



I’ve messed up and I don’t know what to do

- Visualize
- Express with the 

right words what 
you want to do



Tips and tricks

- https://github.com/git-t
ips/tips

- git help
- git help --all
- git help --guide
- git help glossary
- https://github.com/k88

hudson/git-flight-rules

https://github.com/git-tips/tips
https://github.com/git-tips/tips


git with your team



Workflow



Many choices
(git does not care)



github style

- main branch can be deployed. Always!
- All individual developers fork your project
- A feature per branch
- People open merge request if they want to have 

something merged
- feature is merged when reviewed, tested, accepted
- Other rebase if needed. That’s your job to keep 

track with main branch.



Who makes the call to merge something?

- 100 % dependent of 
the project

- Usually two reviewers 
to get something 
merged

- Depends on how many 
people work on your 
project



How can I stay up to date with upstream changes?

- merge or rebase strategy
- http://gitforteams.com/resources/merge-r

ebase.html
- My favorite is rebase (easier to read on the 

commit DAG)

http://gitforteams.com/resources/merge-rebase.html
http://gitforteams.com/resources/merge-rebase.html


Eyes on the road

- git blame
- git log
- git reflog to see 

everything that 
happened on your 
local repository



Reviews

- Automated gatekeeper
- Peer review

https://speakerdeck.com/nnja/code-review-skil
ls-for-pythonistas-djangocon-2018 

https://speakerdeck.com/nnja/code-review-skills-for-pythonistas-djangocon-2018
https://speakerdeck.com/nnja/code-review-skills-for-pythonistas-djangocon-2018


General best practices on distributed development

- One change per commits (no little changes 
on the side)

- Small commits that can be reviewed easily
- Add tests to your code that are launched 

automatically by CI/CD
- Published history should not be altered.

- Don’t do that
- Seriously DO NOT DO THAT



Reference:

- git for teams



rleone@scaleway.com

Any questions?


