THE EXISTENCE OF FIXED POINTS FOR
THE //GI/1 QUEUE
Joan Maicese
Baggie Prabhakar
The Arab ab o Portably (2003)
LINCS Network Theory Reading Group Michel Davydor
O. Queving theary prerequisutes

- Queving madel.

- Quertians of interest:

\rightarrow stablity
\rightarrow stahazarty
- Kendall's notation number of sevice chameb

 capachy of the queve (chaults) time between arivals sevice time distrabition
- Examples

$$
\rightarrow M / M / 1
$$

G Markovian $\mid \rightarrow$ PPP Cexponential (nter-asital times)
\rightarrow Markovian \rightarrow Exposentiul service time $\xrightarrow{ } \rightarrow 1 \rightarrow$ One service chamel
$\rightarrow M / G / 1$
Lo Geneal indepencent ductribuion (ii.d. service times)
Hereatter we are interested in a $/$ /GI/I (/00/FLFS) queve.

1. Motivation anl main restt

Coal:
Existence of fixed points for. /GI/1 quever, i.e. inter-arrival proceses with the same distribution as the correpponding inter-departree proces.
Interest:
Limiting behavior of the dutribution of depatvere procenes from a tandem of queves.

$S(n, x)$ - service time of westome $n \in \mathbb{D}$ in qeave $k \in \mathbb{N}$
$A(G, k)$ - inter accival himes between westomers n and $n+1$.

- Assumption:
- $A^{0}=(A(n, 0), n \in \mathbb{Z})$ is ergodic and independent of $(S(n, h), n \in \mathbb{Z},, \in \in \mathbb{N})$
. $(S(n, k))$ are lid r.v.

$$
\begin{aligned}
& \mathbb{E}[S(0,0)]<E[A(0,0)]<\infty \\
& \mathbb{P}(S(0,0) \neq \mathbb{E}[S(0,0)])>0
\end{aligned}
$$

- Known result (Loynes):

For $\mid<\lambda 1$, each of the equilibrium departure process $A^{\prime \prime}=(A(n, k))_{n+2}$ is ergodic of mam $E[A(0,0)]$

- Questions:
\rightarrow Existence: does Here east a mean a ergodic inter-arival process such that the inherdepuver process has the same durriblion?

If yes, we call , t an ergodic fixed point of mean α
\rightarrow Uniqueness (if esshtence) of ergodic fixed point
\rightarrow Convergence: ancme there is a unique ergodic fixed point of mean α. If A^{o} is ergodic of mean α, does be law of $A^{\prime \prime}$ converge weakly to the ergodic freed pant as $k_{\rightarrow \infty}$?
If yes, the fred point is called an attractor

- Known realles
- For expanential sever qeves:

Burke: Poisan process of rate $\frac{1}{\alpha}$ is a fixed pant for exponential secver greves with mean service $\beta<\alpha$.
Araaltharam: Unigueness
Mountford/Prabnakar: atrractor

- For /GIl1 queves:

Chang: uniquenen
Prabtakear: uniquenes + convegence auming finite mean (and exabtence)

- Main call of He paper

If the serine time S has mean β and if $\int \mathbb{P}(s \geqslant v)^{\frac{1}{2}} d v<\infty$, then there is a set $\zeta \operatorname{closed}$ in (β, ∞) with if $\{u \in \varphi\}=\beta$, ap $\{u \in \varphi\}=\infty$ st.
(a) for $\alpha \in \rho$, there expos a mean α ergochic fixed point for the queue
(b) For $\alpha \notin S^{\}}$, consider the stationary (bit nat ergodic) process F of mean α obtained as the convex combination of he e ergodic fixed points of means α and $\bar{\alpha}$, where $\alpha=\operatorname{spp}\{u t\}, v \leq \alpha\}$ and $\alpha=\inf \{u t\}, u \geq \alpha\}$. (Since ρ is closed, a and $z \in \mathcal{S}$ and F is a fixed pant for the queue.).
If the inter-arival times of the input posen have a mean α, then the cesar areage of the laws of the fist k inter-departwre process converges madly to F
Conjecture: $Y=(\beta, \infty)$ and (h) doesnt matter
2. Formalism

- The . Jolt queue

We define the mappings i) $\mathcal{W}: \mathbb{R}_{+}^{\mathbb{R}} \times \mathbb{R}_{+}^{\mathbb{L}} \rightarrow \mathbb{R}_{+}^{\mathbb{Z}} \cup\left\{(+\infty)^{\mathbb{Z}^{2}}\right\}$

$$
(a, s) \mapsto w=\psi(a, s)
$$

with

$$
\begin{aligned}
W(n) & =\psi(a, s)(n) \\
& =\left[\sup _{j \leq n-1} \sum_{i=j}^{n-1}(s(\bar{i})-a(i))\right]^{+}
\end{aligned}
$$

Note that this implies (Lindsey's equation)

$$
w(n)=[w(n-1)+s(n-1)-a(n-1)]^{+}
$$

2) $\Phi: \mathbb{R}_{+}^{\mathbb{2}} \times \mathbb{R}_{t}^{\mathbb{2}} \rightarrow \mathbb{R}_{+}^{2}$
$(a, s) \mapsto d=\Phi(a, s)$
with $d(n)=\Phi(a, s)(n)=[a(n)-s(n)-\psi(a, s)(n)]^{+}+s(n+1)$
Let $L: \mathbb{P}_{r}^{\mathbb{R}} \rightarrow\left(\mathbb{R}_{+}^{\mathbb{R}}\right.$ denote the translation shift: $L V(n)=U(n+1)$.
Then $d=\left[a-s-\psi(a(s)]^{+}+h s\right.$
When $w \in \mathbb{R}_{t}^{2}, \quad d(n)=a(n)+w(n+1)-w(n)+s(n+1)-s(n)$
Pro: $\forall a, b \in \mathbb{R}_{t}^{\mathbb{Z}}, \forall s \in \mathbb{R}_{-1}^{2}, \quad a \leqslant b \Rightarrow \psi(a, s) \geqslant \psi(b, s)$,

$$
\Phi(a, s) \leqslant \Phi(b, s)
$$

"Increasing inter-wormal bines increase inter-deputre times and deceases workloads"

The stationary queve
Conside a measuable and P-stantionary shitt $\theta: \Omega \rightarrow \Omega$. Conader the proereses $A: \Omega \rightarrow \mathbb{R}_{+}^{2}$ and $S: \Omega \rightarrow \mathbb{R}_{+}^{2}$ that are ancured comparible with θ and have a finite and poschive mear.
(*) Set $W=\psi(A, S)$ and $D=\Phi(A, S)$.
This nodel is a slahnonary quere. If θ is egodic, the model is an ergaticquere.
When S is ciid ond on conlat, it is an ci.d. quere.
(Loynes):
 $=\quad$, arylhing cas hoppus (crival)

Let σ be the law of S. Define $\Phi_{\sigma}: M_{s}\left(R_{t}^{2}\right) \rightarrow M_{s}\left(R_{4}^{2}\right)$,

$$
\mu \rightarrow \Phi_{\nabla}(\mu)
$$

where $\Phi_{\sigma}(\beta)$ is the law $\Phi \Phi(A, S)$ where $A_{\sim}, S_{\sim} \sigma$ and $A \Perp S$.
The map Io is called the queering map.
A distribution μ such that $\left.\Phi_{\sigma} L_{\mu}\right)=\mu$ is called a fixed points for the gere.
(Loynco): $\forall \alpha>\beta, \Phi_{\sigma}: \pi_{e}^{\alpha}\left(\mathbb{R}_{+}^{2}\right) \rightarrow M_{e}^{\alpha}\left(\mathbb{R}_{1}^{\mathbb{Z}}\right)$, where β is the mean $\forall \alpha s \beta, \Phi_{\sigma}: I_{e}^{\alpha}\left(n_{t}^{\mathbb{Z}}\right) \rightarrow\{\sigma\}$ striae time

Shable ii.d. queres in fandem
Let $\{S G,(c), n \in Z, k \in \mathbb{N}\}$ be ciid \mathbb{R}^{+}-valiec r.vi mith $\mathbb{E}[S(0,0)]=\beta \in \mathbb{K}_{+}^{\infty}$. Assume $\mathbb{P}(S(0,0)=\beta)<1$.
For $\in \in \mathbb{N}$, define $S^{k}: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{Z}}$ by $S^{k}=(S(n, k))_{n \in \mathbb{Z}}$. Let σ be the dustciation of S^{k}. Consides $A^{\theta}=(A(n, 0))_{n \in \Omega}: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{R}}$ and anme A^{0} is statiocary, independent of S^{k} for all h and saluties $\left[E[A(0,0)]=\alpha \in \mathbb{N}_{4}^{*}\right.$. Let θ be a P-stationary shift s.t. A^{0} and S^{k} the are compantle inth θ. Let \mathcal{I} be the corceppoding invariant s-algbora. We ammese $\beta<\mid E\left[A\left(q_{0}\right) \mid I\right]$ as. STABLLTY

Define for all $k \in \mathbb{N}$

$$
\begin{aligned}
& W^{k}=(W(n, k))_{n \in R}=\Psi\left(A^{k}, s^{k}\right) \\
& A^{k+1}=(A(\Omega, k+1))_{n \in B}=\Phi\left(A^{k}, s^{k}\right)
\end{aligned}
$$

Ak+7: inter. depasture pooces at quere k and inter-arital procen at pere last.
The sequence $\left(A^{k}\right)_{k c} u$ a Markov chun. μ is a stanowary dutrabchan of A^{k}) iff p is a Gxed pont for the queve. Does (Alt) admit nontrival stahooray dustibation?
3. The reacths

- Unigurenen of fixed pont (fram exahing IVteatrue)
 Conoder μ, v in $M_{c}\left(P_{t}^{\mathbb{Z}}\right)$ and be $D\left(\mu_{1},\right)=\left\{(x, y) \in \alpha_{s}\left(\mathbb{R}_{t}^{2} \times R_{t}^{2}\right) \mid x, y, y n,\right\}$ We coroder the distance $\bar{e}(y, v)=\inf (x, y) \in D(y, v) \quad \mathbb{E}[|X(0)-Y(0)|]$.
Thm: Conider a shationary quere as defined in (8) mth ervie poocen S and hoo

Then $\bar{p}(\Phi(A, S), \Phi(B, S)) \leq e^{(A, B)}$.
In the iid serice case: <

The: Consider a stable cid. tandem model with interarinal propenes A° and B° Cong with different laws bt such that $\mathbb{E}[A(0,0) \mid I]=\mathbb{E}(B(0,0) \mid I]$ as.
Prabather Recall $A^{n+1}=\Phi\left(A^{n}, S^{n}\right), B^{n+4}=\Phi\left(B^{n}, S^{n}\right)$ Then, there expo $k \in W^{+}$sit. $\bar{p}\left(A^{k}, B^{k}\right)<\bar{p}\left(\not A^{\prime}, B^{\circ}\right)$.
If $B^{1}=\Phi\left(B^{0}, S^{0}\right) \sim B^{0}$, then $\lim _{n \rightarrow \infty} p\left(A^{n}, B^{0}\right)=0$ and $A^{1} \Rightarrow B^{0}$.
Let $M_{s}^{P \cdot \alpha} C\left(\mathbb{R}_{+}^{2}\right)=\left\{\mu \in M_{s}^{\alpha}\left(\mathbb{R}_{F}\right) \left\lvert\, X \sim \mu \rightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{s=0}^{n-1} X(i)=\alpha\right.\right.$ ass. $\}$
(OC: 1) Consider on ii.d queer. The corresponding queueing map Φ_{σ} has at most ane fixed point in $M M_{s}^{p / \alpha}\left(\mathbb{R}_{+}^{2}\right)$ for $\left.\alpha>\operatorname{ECS}(0)\right]$
2) Consider on cid quale and $\alpha) \mathbb{E} S(0)]$. If $\zeta \in M_{s}^{p i \alpha}\left(\mathbb{R}_{t}^{2}\right)$ is a fixed pout, then it is necessarily eggadic.Cie. $\left.\zeta \operatorname{He}_{e}^{\alpha}\left(R_{t}^{\mathbb{Z}}\right)\right)$.

- Exushence of fixed pant

Thm (Mannenit): Coarider a queve with an ci.id. service process S sahnfung

$$
E[S(0)] \in \mathbb{P}_{+}^{+}, \mathbb{P}\left(S(0)=\left[E[(S(0)])<1 \text { and } \int^{1} \mathbb{P} C((0) \geqslant u)^{3^{\frac{1}{2}}} d u<\infty\right. \text {. }\right.
$$

 such that the corresponding inher deportree proces D has the same dustratinin ao A.

- Idea of proos

1) Comider Cesaro aveages of the lans of A l.
\rightarrow Covider He quatruple ($\left.A^{k}, s^{k}, w^{k}, A^{k+1}\right)$ denote its law by J_{k}. For $n \in N^{\theta}$, define $\mu_{n}=\frac{1}{n} \sum_{k=0}^{n-1} v_{k}$
\rightarrow The sequence (ψ)) is hight.
\rightarrow Let μ be a ubsequatial limit of $\left(\mu_{0}\right)$. Conuder $(A, S, \tilde{S}, \tilde{D}, \tilde{D}) \sim \mu$.
\rightarrow By the cortinuas mapping theorem and propechies of Cexaso averages, we show

$$
\hat{A} \sim \tilde{D}
$$

2) Show lut $\hat{D}=\Phi(\hat{A}, \hat{S})$ ving Brchhofts egodu theorem
3) Find conctition enswing this fxed pait is not the trival Gxed pantro. Co Uses the iid. assumphen

- Valves of the means for which a fixed port exists
 Assume $\int_{\mathbb{R}_{+}} \mathbb{P}(S(0,0) \geq v)^{\frac{1}{2}} d v<\infty$.

Define $\quad \zeta=\left\{\alpha \in(\beta,+\infty) \mid \exists \mu \in \mu^{\alpha} \rho\left(R_{+}^{\mathbb{Z}}\right), \Phi_{\sigma}(\alpha)=\mu\right\}$

- From previous the: $\Theta \neq \varnothing$
- Conjecture: $\zeta=(\beta,+\infty)$
- Actual result: \mathcal{L} is unbounded and closed in (β, ∞).

For $\alpha \in \varphi$, denote by β_{α} the niger ergodic fixed point of mem α I A as uther annal process dustabled as $\zeta_{\text {oo }}$
Prop: Consider ar ergodic interanival process A^{0} of mean α.

1) If $\alpha \in Y: \bar{\rho}\left(A^{\prime \prime}, A_{\alpha}\right) \underset{k \rightarrow \infty}{ } 0$ and $A^{k} \Rightarrow A_{\alpha}$
2) If $\alpha \notin Y$, then $\frac{1}{k} \sum_{i=0}^{k \cdot \alpha} \alpha\left(A^{i}\right) \Rightarrow p \alpha\left(A_{\alpha}\right)+(1-p) \alpha\left(A_{\alpha}\right)$ where $\underline{\alpha}=\operatorname{ap}\{v \in \varphi, v \leq \alpha\}, \bar{\alpha}=\operatorname{iff}\{v \in \varphi, v \geqslant \alpha\}$ and $p=\frac{\bar{\alpha}-\alpha}{\bar{\alpha}-\underline{\alpha}}$

THANK YOU FOR
LISTENing!

