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Exponential families

We introduce:
e Random vector X = (X1, X2, ..., X;y) taking values in X™ = X1 X Xp X ... X Xpp,.
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We introduce:
e Random vector X = (X1, X2, ..., X;y) taking values in X™ = X1 X Xp X ... X Xpp,.

e Vector-valued function ¢ : x € X +— (p1(x), ..., dn(x)) € R".
The functions ¢1, ¢o, . .., ¢, are called sufficient statistics.

e Vector § = (01,02,...,0,) € R" of canonical or exponential parameters.

The exponential family associated with ¢ is the collection of probability mass functions
po(x) = h(x)el1OeCN=A0) ¢ xm

parameterized by the vector 6 of canonical parameters.
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po(x) = elOON—AB) ¢ pm
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Exponential families

The quantity A(6) is called the log-partition function or cumulant function, given by

A(0) = log ( Z e<9’¢(x)>) .
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po(x) = elOON—AB) ¢ pm

Exponential families
The quantity A(6) is called the log-partition function or cumulant function, given by

A(0) = log ( Z e<9’¢(x)>> .

xXeEXm

The domain €2 of the log-partition function A is the set of canonical parameters 6 such
that A(6) is finite, that is

Q={0€R": A(f) < +o0}.
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e Regularity: The domain Q is open.
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Exponential families A(0) = log (Xyexm e70)

We make the following technical assumptions:
e Regularity: The domain Q is open.

e Minimality: There does not exist a nonzero vector § € R" such that
m
(6, 6(x)) =D _ bigi(x)
i=1

is a constant.
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po(x) = elOON—AB) ¢ pm

Exponential families A(0) = log (Xyexm e70)

We make the following technical assumptions:
e Regularity: The domain Q is open.

e Minimality: There does not exist a nonzero vector § € R" such that
m
(6, 6(x)) =D _ bigi(x)
i=1

is a constant. This implies that there is a unique parameter vector 6 associated with
each distribution in the exponential family.
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6/26 Exponential families TU/e



po(x) = elOON—AB) ¢ pm

Log-partition functions A(0) = log (3, com €020

vs. generating functions

Consider the moment-generating function of the sufficient statistics:

M(t) = Ep, (e<t’¢(X)>>> t=(t1,t2,...,tn) ER".

6/26 Exponential families TU/e



po(x) = elOON—AB) ¢ pm

Log-partition functions A(0) = log (3, com €020

vs. generating functions
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po(x) = elOON—AB) ¢ pm

Log-partition functions A(0) = log (3, com €020

vs. generating functions

Consider the moment-generating function of the sufficient statistics:
M(t) = Ep, (e“"ﬁ(x”), t=(t1,t,...,t) € R".

We have M(t) = e*0+)=A0) for each t € R” such that 6 + t € Q. Indeed,

M(t) = Z e{t:0(x)) o{8,8(x))—A(9) _ (Z o(t+o, ¢>(X)> A(6) — GA(E+0)—A(9)

xXeEXm XEXM
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Continuous univariate distributions
e Exponential distribution

e Normal distribution
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1 — Common distributions A(8) = log (3, com €/420N)

Continuous univariate distributions
e Exponential distribution
e Normal distribution
e Beta distribution

Discrete univariate distributions
e Geometric distribution
e Bernoulli distribution
e Binomial distribution (with a fixed number of trials)

e Poisson distribution
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1 — Common distributions A(8) = log (3, com €/420N)

Probabilistic graphical models
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1 — Common distributions

Probabilistic graphical models

Markov random field
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Probabilistic graphical models

Markov random field Distribution:
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9/26 Exponential families TU/e



po(x) = elOCN=AG) ¢ pm

1 — Common distributions A(8) = log (3, com €/420N)

Probabilistic graphical models

Markov random field Distribution:

p(x1,x2, X3, xa) o fa(x1, x2)fo(x2, x3)fe(x3, Xa) fy(x1, Xa)
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po(x) = elOCN=AG) ¢ pm

1 — Common distributions A(8) = log (3, com €/420N)

Probabilistic graphical models

Markov random field Distribution:

e p(x1, x2, X3, Xa) o fa(x1, x0)fp(x0, X3)fe (X3, Xa) fy (X1, Xa)
° @ fo(x1, %) = (198 2(0,0))1 (4 15)=(0,0) 3 (108 fa(0:1))1(xy ,55)=(0,1)
% 108 fa(1,0))1(q x)=(1,0) % (108 7a(1,1))1(x x)=(1,2)
Question: Calculate the normalization constant or marginal distributions.
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1 — Common distributions

Limiting distributions of stochastic systems

M/M/1-PS queue with two customer classes

)\1—>
)\2—>
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po(x) = elOCN=AG) ¢ pm

1 — Common distributions A(8) = log (3, com €/420N)

Limiting distributions of stochastic systems

M/M/1-PS queue with two customer classes  Stationary distribution:

=3 =1
X1 , X2 TI'(X) _ (1 _ p) <X1 +X2>p1X1P2X21

X1
~ 1]2|1]1 —
A2 _ M DY S — Mt
PL="p P2 =0 p=prtp2 ="

Question: Calculate long-term performance metrics.
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We introduce;

e Random vector X = (X1, X, . =

.., Xm) taking values in X™ = X1 x Xy x ... X Xp,.
o Sufficient statistics ¢ : x € X — (¢1(x), ..., Pa(x)) € R".

o Vector pu = (u1, (2, - .., n) € R" of mean parameters.
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2 — Maximum-entropy distribution A(0) = log (X, xm €90)

We introduce;

.., Xm) taking values in X™ = X1 x Xy x ... X Xp,.
o Sufficient statistics ¢ : x € X — (¢1(x), ..., Pa(x)) € R".

o Vector pu = (u1, (2, - .., n) € R" of mean parameters.

e Random vector X = (X1, X, .

Moment-matching condition: Find a distribution p on X' such that

Ey (¢(X)) =p, thatis, E,(6i(X))=pi, i=1,2,...,n.
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po(x) = elOON—AB) ¢ pm

2 — Maximum-entropy distribution A(0) = log (X, xm €90)

We introduce;

e Random vector X = (X1, X2, ..., X;») taking values in X™ = X1 X Xp X ... X Xpp,.
o Sufficient statistics ¢ : x € X — (¢1(x), ..., Pa(x)) € R".
o Vector pu = (u1, (2, - .., n) € R" of mean parameters.

Moment-matching condition: Find a distribution p on X' such that
Ey (¢(X)) =p, thatis, E,(6i(X))=pi, i=1,2,...,n.
We let M denote the set of vectors u such that such a distribution exists, that is,

M = {p € R" : Ip such that E, (¢(X)) = u}.
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po(x) = elOON—AB) ¢ pm

2 — Maximum-entropy distribution A(0) = log (X, xm €90)

Principle of maximum entropy: Among all distributions p such that E, (¢(X)) = p,
choose a distribution p that maximizes the Shannon entropy:

H(p) = — > (log p(x))p(x).

xXeEXm
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2 — Maximum-entropy distribution A(0) = log (X, xm €90)

Principle of maximum entropy: Among all distributions p such that E, (¢(X)) = p,
choose a distribution p that maximizes the Shannon entropy:

H(p) = — > (log p(x))p(x).

xXeEXm

Result: The solution is a member py of the exponential family associated with ¢,
for some vector 0 = (01,0,,...,0,) € R" of canonical parameters:

po(x) = e@0CN-A®) ¢ m.
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po(x) = elOON—AB) ¢ pm

2 — Maximum-entropy distribution A(0) = log (X, xm €90)

Principle of maximum entropy: Among all distributions p such that E, (¢(X)) = p,
choose a distribution p that maximizes the Shannon entropy:

H(p) = — > (log p(x))p(x).

xXeEXm

Result: The solution is a member py of the exponential family associated with ¢,
for some vector 0 = (01,0,,...,0,) € R" of canonical parameters:

po(x) = e@0CN-A®) ¢ m.

We now prove this result, and we will explain later how to choose the parameters 6.
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Sketch of proof using Lagrange multipliers

Assume X' is finite, so that a distribution p is a vector p = (p(x),x € X™) € R‘f”.
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Sketch of proof using Lagrange multipliers
Assume X' is finite, so that a distribution p is a vector p = (p(x),x € X™) € R‘f”.

We have to solve the following optimization problem:

Maximize — H(p) == > (log p(x))p(x),
xXeXxXm

Subject to Z p(x) —1 =0 and Z Gi(x)p(x) —pi=0,i=1,2,...,n.

xXEXM xexm
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Sketch of proof using Lagrange multipliers

Assume X' is finite, so that a distribution p is a vector p = (p(x),x € X™) € R‘f”.

We have to solve the following optimization problem:

Maximize — H(p) == > (log p(x))p(x),
xXeXxXm

Subject to Z p(x) —1 =0 and Z di(x)p(x) —pi=0,i=1,2,...

xXEXM xexm

The Lagrange function associated with this problem is

, N.

L(p,n,0) = = Y (log p(x))p(x) +n ( > p(x) - 1) +> 0 ( > ilx)p(x) - m) :
i=1

xexm xexm xexm
with p = (p(x),x € X™) € RX", 5 € R, and 6 = (61,62,...,0,) € R".
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Sketch of proof using Lagrange multipliers

The Lagrange function associated with this problem is

L(p,n,0) == (log p(x))p(x) + 17 ( > p(x) - 1) +)0; < > 6ilx)

xXexXm xXexm i=1 XEXM
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The Lagrange function associated with this problem is

L(p,n,0) == (log p(x))p(x) + 17 ( > p(x) - 1) +)0; < > 6ilx)

xXexXm xXexm i=1 XEXM

We look for the stationary point(s) of this function:

0= 25 3 -1,

877 XEXM
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The Lagrange function associated with this problem is
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xXexXm xXexm i=1 XEXM

We look for the stationary point(s) of this function:
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Sketch of proof using Lagrange multipliers

The Lagrange function associated with this problem is

L(p,n,0) == (log p(x))p(x) + 17 ( > p(x) - 1) +)0; < > 6ilx)

xXexXm xXexm i=1 XEXM

We look for the stationary point(s) of this function:

xEX™ I xexm

) —(1 + log p(x)) +n + ; 0ipi(x),
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Sketch of proof using Lagrange multipliers

The Lagrange function associated with this problem is

L(p,n,0) == > (log p(x))p(x) + 1 ( > p(x) - 1) +> 6 < > ix)p(x) - m) :

xXexXm xXexm i=1 XEXM

We look for the stationary point(s) of this function:

oL oL .
OZ*ZZP(X)_L O:%:Z(bi(X)P(X)—/J,,', ’:1727"'7”7

xEX™ I xexm

=—(1+logp(x))+n+ > 0igi(x), so that p(x) = e 1H7. 000
op() — (L legp(x)) + 7 ; ¢i(x) p(x)
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Sketch of proof using Lagrange multipliers

What we sweep under the carpet:

e We can verify that such a stationary point is indeed a maximum of the entropy.
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e We can verify that such a stationary point is indeed a maximum of the entropy.

e We can show a priori that a maximume-entropy distribution has maximum support.
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e The maximum-entropy distribution is unique because the representation is minimal.
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Sketch of proof using Lagrange multipliers

What we sweep under the carpet:
e We can verify that such a stationary point is indeed a maximum of the entropy.
e We can show a priori that a maximume-entropy distribution has maximum support.
e The maximum-entropy distribution is unique because the representation is minimal.

® The log-partition function A(f) may tend to infinity as p approaches the boundary
of M, so this reasoning is valid only when when p is in the interior of M.
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Sketch of proof using Lagrange multipliers

What we sweep under the carpet:

e We can verify that such a stationary point is indeed a maximum of the entropy.

We can show a priori that a maximum-entropy distribution has maximum support.

The maximum-entropy distribution is unique because the representation is minimal.

The log-partition function A(f) may tend to infinity as u approaches the boundary
of M, so this reasoning is valid only when when p is in the interior of M.

The continuous variant of this result is proved with calculus of variations.
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po(x) = elOCN=AG) ¢ pm

0 0 0 _ 0,0(x
3 — Variational inference A(8) = log (3, com €/420N)

Calculating the expectation of the sufficient statistics
requires calculating the log-partition function A(9).
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0 0 0 _ 0,0(x
3 — Variational inference A(8) = log (3, com €/420N)

Calculating the expectation of the sufficient statistics
requires calculating the log-partition function A(9).

Calculating the log-partition function A(#) is difficult:

e Discrete finite case: Combinatorial explosion.

16/26  Exponential families TU/e



po(x) = elOCN=AG) ¢ pm

0 0 0 _ 0,0(x
3 — Variational inference A(8) = log (3, com €/420N)

Calculating the expectation of the sufficient statistics
requires calculating the log-partition function A(9).

Calculating the log-partition function A(#) is difficult:
e Discrete finite case: Combinatorial explosion.

e Discrete infinite case: Calculate an infinite sum.
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Calculating the expectation of the sufficient statistics
requires calculating the log-partition function A(9).

Calculating the log-partition function A(#) is difficult:
e Discrete finite case: Combinatorial explosion.
e Discrete infinite case: Calculate an infinite sum.

e Continuous case: Calculate a high-dimensional integral.
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0 0 0 _ 0,0(x
3 — Variational inference A(8) = log (3, com €/420N)

Calculating the expectation of the sufficient statistics
requires calculating the log-partition function A(9).

Calculating the log-partition function A(#) is difficult:
e Discrete finite case: Combinatorial explosion.
e Discrete infinite case: Calculate an infinite sum.

e Continuous case: Calculate a high-dimensional integral.

Variational methods will give us a principled way of evaluating or approximating A(6).
These include sum-product algorithms, the Bethe approximation, and mean-field methods.
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po(x) = elOON—AB) ¢ pm

0 0 0 _ 0,0(x
3 — Variational inference A(8) = log (3, com €/420N)

According to (Wainwright and Jordan, 2008):
The general idea is to express a quantity of interest as the solution of an op-
timization problem. The optimization problem can then be ‘“relaxed” in various
ways, either by approximating the function to be optimized or by approximating
the set over which the optimization takes place. Such relaxations, in turn, provide
a means of approximating the original quantity of interest.
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1. Exponential families
1.1 Definition
1.2 Motivation

2. Variational inference
2.1 Log-partition function
2.2 Conjugate dual function
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2. Variational inference
2.1 Log-partition function
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po(x) = elOON—AB) ¢ pm

Convexity A(0) = log (3, ¢ pm e{000N)

Proposition 3.1:
1. The function A has derivatives of all orders on its domain .
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po(x) = elOON—AB) ¢ pm

Convexity A(0) = log (3, ¢ pm e{000N)

Proposition 3.1:

1. The function A has derivatives of all orders on its domain €.
The first two derivatives yield the mean and covariance of ¢(X):

OA 92A

879,' = EPQ (¢’(X))7 69,801

= Covp, (¢i(X), 9j(X)).
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The first two derivatives yield the mean and covariance of ¢(X):

OA 92A

879,' = EPQ (¢’(X))7 69,801

= Covp, (¢i(X), 9j(X)).

In vector notation, we obtain VA(6) = E,, (¢(X)) and V2A(8) = Cov,, (¢(X)).

19/26  Exponential families TU/e



po(x) = elOON—AB) ¢ pm

Convexity A(0) = log (3, ¢ pm e{000N)

Proposition 3.1:

1. The function A has derivatives of all orders on its domain €.
The first two derivatives yield the mean and covariance of ¢(X):

OA 92A

879,' = EPQ (¢’(X))7 69,801

= Covp, (¢i(X), 9j(X)).

In vector notation, we obtain VA(6) = E,, (¢(X)) and V2A(8) = Cov,, (¢(X)).

2. The function A is strictly convex on its domain Q.
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Sketch of proof

1. For the first partial derivative, we have

OA 3, cam Di(x)el®ebN
870i - ZXEXm e<9:¢(X))
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1. For the first partial derivative, we have
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po(x) = elOON—AB) ¢ pm

Sketch of proof A(8) = log (z cam €$0:40)
. o VA(0) = Ep, ($(X))
1. For the first partial derivative, we have
8A Zx m (ZSI( P
T ZGX M(X = 3 i(x)el8o0N-AO)
L cxm € =
Z ®i(x)po(x)
xXexm
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Sketch of proof A(6) = log (Z cam €000)
. . o VA(9) = Ep, (¢(X))
1. For the first partial derivative, we have
OA _ Yxeam $i(x) o(0.6()—A©)
00, > xexm elf ¢’(X x;(:m Pilx
= 3" 6i(x)palx) = Ep, (61(X).
xexm
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Sketch of proof A(6) = log (Z cam €000)
. . o VA(9) = Ep, (¢(X))
1. For the first partial derivative, we have
OA _ Yxeam $i(x) o(0.6()—A©)
00, > xexm elf ¢’(X x;(:m Pilx
= 3" 6i(x)palx) = Ep, (61(X).
xexm

The calculation for the second partial derivative is similar.
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po(x) = elOON—AB) ¢ pm

Sketch of proof A(6) = log (erxm el?00))
. . o VA(9) = Ep, (¢(X))
1. For the first partial derivative, we have
OA _ Yxeam $i(x) o(0.6()—A©)
90, Y oqm el ¢>(x X§m¢
= 3" 6i(x)palx) = Ep, (61(X).
xexm

The calculation for the second partial derivative is similar.

2. The Hessian matrix V2A() is the covariance matrix of the vector ¢(X) when X ~ py,
and a covariance matrix is positive semi-definite. This shows that A is convex.
(Strict convexity: minimality of the representation.)

20/26  Exponential families TU/e



Outline

1. Exponential families
1.1 Definition
1.2 Motivation

2. Variational inference
2.1 Log-partition function
2.2 Conjugate dual function
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Outline

2. Variational inference

2.2 Conjugate dual function
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po(x) = elOON—AB) ¢ pm

Conjugate dual function A(6) = log (Z cxn €000)
(

§ VA(0) = Ep, (¢(X))
For each € R”, let A*(u) = sup {(0, u) — A(6)}.

e
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. VA(0) = Ep, (¢(X))
For each € R”, let A*(u) = sup {(0, u) — A(6)}.
e
— A®®)
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po(x) = elOON—AB) ¢ pm

Conjugate dual function A(6) = log (Z cxn €000)
VA(9) = Ep, (6(X))

For each € R”, let A*(u) = sup {(0, u) — A(6)}.
e

Theorem 3.4 (Part 1):

1. For each p € M°, the supremum in A*(u) is attained by the vector 6 € Q that
satisfies the moment-matching condition
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For each € R”, let A*(u) = sup {(0, u) — A(6)}.
e

Theorem 3.4 (Part 1):

1. For each p € M°, the supremum in A*(u) is attained by the vector 6 € Q that
satisfies the moment-matching condition, and A*(u) = —H(pg).
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po(x) = elOON—AB) ¢ pm

Conjugate dual function A(6) = log (Z cxn €000)
VA(9) = Ep, (6(X))

For each € R”, let A*(u) = sup {(0, u) — A(6)}.
e

Theorem 3.4 (Part 1):

1. For each p € M°, the supremum in A*(u) is attained by the vector 6 € Q that
satisfies the moment-matching condition, and A*(u) = —H(pg).

2. For each u ¢ M, we have A*() = +oo.
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po(x) = elOON—AB) ¢ pm

Conjugate dual function A(6) = log (erxm el¢0)
(

§ VA(0) = Ep, (¢(X))
For each € R”, let A*(u) = sup {(0, u) — A(6)}.

6eQ
Theorem 3.4 (Part 1):

1. For each p € M°, the supremum in A*(u) is attained by the vector 6 € Q that
satisfies the moment-matching condition, and A*(u) = —H(pg).

2. For each u ¢ M, we have A*() = +oo.

3. For each € M\ M°, we have A*(u) = lim,_, 1o A*(1") taken over any sequence
(") neny € M converging to .

23/26  Exponential families TU/e



po(x) = elOCN=AG) ¢ pm

Sketch of proof A(6) = log (X cxm e920)

VA@0) =E X
Since the function A is strictly convex, the function ©) po (#(X))

0 € Qs (0, 1) — A(0) is strictly concave. A* () = supgeq {(0, 1) — A(0)}
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Sketch of proof

Since the function A is strictly convex, the function
0 € Qs (0, 1) — A(0) is strictly concave.

Therefore, 6 € Q is a supremum if and only if

0 .
0= 96, — (O, ) —A0)), i=1,2,...,n,
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po(x) = elOCN=AG) ¢ pm
Sketch of proof A(0) = log (3, ¢ pm €(0:20)

. . . . VA(0) = Ep, (6(X))
Since the function A is strictly convex, the function )
0 € Qs (0, 1) — A(0) is strictly concave. A* () = supgeq {(0, 1) — A(0)}

Therefore, 6 € Q is a supremum if and only if

0= 8%((9,@ A9)), i=1,2,...,n, e, Oz,u,-—i
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po(x) = elOCN=AG) ¢ pm
Sketch of proof A(0) = log (3, ¢ pm €(0:20)

. . . . VA(0) = Ep, (6(X))
Since the function A is strictly convex, the function )
0 € Qs (0, 1) — A(0) is strictly concave. A* () = supgeq {(0, 1) — A(0)}

Therefore, 6 € Q is a supremum if and only if
0= 880 (0, ) —A0)), i=1,2,...,n, e, Oz,u,-—i

that is, = VA(0).
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po(x) = elOCN=AG) ¢ pm
Sketch of proof A(0) = log (3, ¢ pm €(0:20)

. . . . VA(0) = Ep, (6(X))
Since the function A is strictly convex, the function )
0 € Qs (0, 1) — A(0) is strictly concave. A* () = supgeq {(0, 1) — A(0)}

Therefore, 6 € Q is a supremum if and only if
0= 8((9 wy —A(0), i=1,2,...,n, e, Oz,u,-—i
00;
that is, = VA(0).

If € M°, there is a unique 6 € Q) that satisfies this moment-matching condition
because A is strictly convex
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po(x) = elOCN=AG) ¢ pm
Sketch of proof A(0) = log (3, ¢ pm €(0:20)

. . . . VA(0) = Ep, (6(X))
Since the function A is strictly convex, the function )
0 € Qs (0, 1) — A(0) is strictly concave. A* () = supgeq {(0, 1) — A(0)}

Therefore, 6 € Q is a supremum if and only if

0= 8%((9,@ A9)), i=1,2,...,n, e, Oz,u,-—i

that is, = VA(0).

If € M°, there is a unique 6 € Q) that satisfies this moment-matching condition
because A is strictly convex, and we have

H(ps) = — > (log pa(x))pa(x)

xXeXm
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po(x) = elOCN=AG) ¢ pm
Sketch of proof A(0) = log (3, ¢ pm €(0:20)

. . . . VA(0) = Ep, (6(X))
Since the function A is strictly convex, the function )
0 € Qs (0, 1) — A(0) is strictly concave. A* () = supgeq {(0, 1) — A(0)}

Therefore, 6 € Q is a supremum if and only if

0= 8%((9,@ A9)), i=1,2,...,n, e, Oz,u,-—i

that is, = VA(0).

If € M°, there is a unique 6 € Q) that satisfies this moment-matching condition
because A is strictly convex, and we have

H(po) = — 3 (108 po(x))pn(x) = (0,12) — A().

xXeXm
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po(x) = elOON—AB) ¢ pm

Variational representation A(0) = log (Xyexm e70)
VA(0) = Ep, (6(X))

A* (1) = supgeq {(0, 1) — A(0)}

Theorem 3.4 (Part 2):

1. The log-partition function has the following variational representation:

A(9) = sup {(8, 1) — A"(1)}
HEM

2. For each 0 € Q, the above supremum is attained uniquely at the vector u € M°
that satisfies the moment-matching condition.
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Conclusion

e Exponential families are parametric sets of probability distributions that appear in
many applications.
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e Many classical distributions can be seen as maximum-entropy distributions under a
given moment-matching condition.
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Conclusion

e Exponential families are parametric sets of probability distributions that appear in
many applications.

e Many classical distributions can be seen as maximum-entropy distributions under a
given moment-matching condition.

e The (log-)partition function and the expectation of the sufficient statistics are hard
to calculate in general, but for exponential families, they can be approximated using
variational inference.
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