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Exponential families

We introduce:

� Random vector X = (X1,X2, . . . ,Xm) taking values in Xm = X1 ×X2 × . . .×Xm.

� Vector-valued function φ : x ∈ Xm 7→ (φ1(x), . . . , φn(x)) ∈ Rn.
The functions φ1, φ2, . . . , φn are called su�cient statistics.

� Vector θ = (θ1, θ2, . . . , θn) ∈ Rn of canonical or exponential parameters.

The exponential family associated with φ is the collection of probability mass functions

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm,

parameterized by the vector θ of canonical parameters.
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Exponential families

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

The quantity A(θ) is called the log-partition function or cumulant function, given by

A(θ) = log

( ∑
x∈Xm

e〈θ,φ(x)〉

)
.

The domain Ω of the log-partition function A is the set of canonical parameters θ such
that A(θ) is �nite, that is

Ω = {θ ∈ Rn : A(θ) < +∞} .
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Exponential families

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)

We make the following technical assumptions:

� Regularity: The domain Ω is open.

� Minimality: There does not exist a nonzero vector θ ∈ Rn such that

〈θ, φ(x)〉 =
m∑
i=1

θiφi (x)

is a constant. This implies that there is a unique parameter vector θ associated with
each distribution in the exponential family.
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Log-partition functions
vs. generating functions

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)

Consider the moment-generating function of the su�cient statistics:

M(t) = Epθ

(
e〈t,φ(X )〉

)
, t = (t1, t2, . . . , tn) ∈ Rn.

We have M(t) = eA(θ+t)−A(θ) for each t ∈ Rn such that θ + t ∈ Ω. Indeed,

M(t) =
∑
x∈Xm

e〈t,φ(x)〉e〈θ,φ(x)〉−A(θ) =

( ∑
x∈Xm

e〈t+θ,φ(x)〉

)
e−A(θ) = eA(t+θ)−A(θ).
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1 � Common distributions

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)

Continuous univariate distributions

� Exponential distribution

� Normal distribution

� Beta distribution

Discrete univariate distributions

� Geometric distribution

� Bernoulli distribution

� Binomial distribution (with a �xed number of trials)

� Poisson distribution
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1 � Common distributions

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)
Probabilistic graphical models

Markov random �eld

X1

X2

X3

X4

Distribution:

p(x1, x2, x3, x4) ∝ fa(x1, x2)fb(x2, x3)fc(x3, x4)fd(x1, x4)

fa(x1, x2) = e(log fa(0,0))1(x1,x2)=(0,0) × e(log fa(0,1))1(x1,x2)=(0,1)

× e(log fa(1,0))1(x1,x2)=(1,0) × e(log fa(1,1))1(x1,x2)=(1,1)

Question: Calculate the normalization constant or marginal distributions.
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1 � Common distributions

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)
Limiting distributions of stochastic systems

M/M/1-PS queue with two customer classes

1 2 1 1

x1 = 3, x2 = 1

µλ1
λ2

Stationary distribution:

π(x) = (1− ρ)

(
x1 + x2

x1

)
ρ1

x1ρ2
x2 ,

ρ1 = λ1
µ , ρ2 = λ2

µ , ρ = ρ1 + ρ2 = λ1+λ2
µ .

Question: Calculate long-term performance metrics.
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2 � Maximum-entropy distribution

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)

We introduce:

� Random vector X = (X1,X2, . . . ,Xm) taking values in Xm = X1 ×X2 × . . .×Xm.

� Su�cient statistics φ : x ∈ Xm 7→ (φ1(x), . . . , φn(x)) ∈ Rn.

� Vector µ = (µ1, µ2, . . . , µn) ∈ Rn of mean parameters.

Moment-matching condition: Find a distribution p on Xm such that

Ep (φ(X )) = µ, that is, Ep (φi (X )) = µi , i = 1, 2, . . . , n.

We letM denote the set of vectors µ such that such a distribution exists, that is,

M = {µ ∈ Rn : ∃p such that Ep (φ(X )) = µ} .
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2 � Maximum-entropy distribution

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)
Principle of maximum entropy: Among all distributions p such that Ep (φ(X )) = µ,
choose a distribution p that maximizes the Shannon entropy:

H(p) = −
∑
x∈Xm

(log p(x))p(x).

Result: The solution is a member pθ of the exponential family associated with φ,
for some vector θ = (θ1, θ2, . . . , θn) ∈ Rn of canonical parameters:

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm.

We now prove this result, and we will explain later how to choose the parameters θ.
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Sketch of proof using Lagrange multipliers

Assume Xm is �nite, so that a distribution p is a vector p = (p(x), x ∈ Xm) ∈ R|X
m|

+ .

We have to solve the following optimization problem:

Maximize
p

H(p) = −
∑
x∈Xm

(log p(x))p(x),

Subject to
∑
x∈Xm

p(x)− 1 = 0 and
∑
x∈Xm

φi (x)p(x)− µi = 0, i = 1, 2, . . . , n.

The Lagrange function associated with this problem is

L(p, η, θ) = −
∑
x∈Xm

(log p(x))p(x) + η

( ∑
x∈Xm

p(x)− 1

)
+

n∑
i=1

θi

( ∑
x∈Xm

φi (x)p(x)− µi

)
,

with p = (p(x), x ∈ Xm) ∈ R|Xm|, η ∈ R, and θ = (θ1, θ2, . . . , θn) ∈ Rn.
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Sketch of proof using Lagrange multipliers

The Lagrange function associated with this problem is

L(p, η, θ) = −
∑
x∈Xm

(log p(x))p(x) + η

( ∑
x∈Xm

p(x)− 1

)
+

n∑
i=1

θi

( ∑
x∈Xm

φi (x)p(x)− µi

)
.

We look for the stationary point(s) of this function:

0 =
∂L
∂η

=
∑
x∈Xm

p(x)− 1, 0 =
∂L
∂θi

=
∑
x∈Xm

φi (x)p(x)− µi , i = 1, 2, . . . , n,

0 =
∂L
∂p(x)

= −(1 + log p(x)) + η +
n∑

i=1

θiφi (x), so that p(x) = e−1+η · e〈θ,φ(x)〉.
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Sketch of proof using Lagrange multipliers

What we sweep under the carpet:

� We can verify that such a stationary point is indeed a maximum of the entropy.

� We can show a priori that a maximum-entropy distribution has maximum support.

� The maximum-entropy distribution is unique because the representation is minimal.

� The log-partition function A(θ) may tend to in�nity as µ approaches the boundary
ofM, so this reasoning is valid only when when µ is in the interior ofM.

� The continuous variant of this result is proved with calculus of variations.
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3 � Variational inference

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)
Calculating the expectation of the su�cient statistics
requires calculating the log-partition function A(θ).

Calculating the log-partition function A(θ) is di�cult:

� Discrete �nite case: Combinatorial explosion.

� Discrete in�nite case: Calculate an in�nite sum.

� Continuous case: Calculate a high-dimensional integral.

Variational methods will give us a principled way of evaluating or approximating A(θ).
These include sum-product algorithms, the Bethe approximation, and mean-�eld methods.
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3 � Variational inference

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)

According to (Wainwright and Jordan, 2008):

The general idea is to express a quantity of interest as the solution of an op-

timization problem. The optimization problem can then be �relaxed� in various

ways, either by approximating the function to be optimized or by approximating

the set over which the optimization takes place. Such relaxations, in turn, provide

a means of approximating the original quantity of interest.
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Outline

1. Exponential families
1.1 De�nition
1.2 Motivation

2. Variational inference
2.1 Log-partition function
2.2 Conjugate dual function
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Convexity

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)

Proposition 3.1:

1. The function A has derivatives of all orders on its domain Ω.

The �rst two derivatives yield the mean and covariance of φ(X ):

∂A

∂θi
= Epθ (φi (X )),

∂2A

∂θi∂θj
= Covpθ (φi (X ), φj(X )).

In vector notation, we obtain ∇A(θ) = Epθ (φ(X )) and ∇2A(θ) = Covpθ (φ(X )).

2. The function A is strictly convex on its domain Ω.
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Sketch of proof

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)
∇A(θ) = Epθ (φ(X ))

1. For the �rst partial derivative, we have

∂A

∂θi
=

∑
x∈Xm φi (x)e〈θ,φ(x)〉∑

x∈Xm e〈θ,φ(x)〉

=
∑
x∈Xm

φi (x)e〈θ,φ(x)〉−A(θ)

=
∑
x∈Xm

φi (x)pθ(x) = Epθ (φi (X )).

The calculation for the second partial derivative is similar.

2. The Hessian matrix ∇2A(θ) is the covariance matrix of the vector φ(X ) when X ∼ pθ,
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Conjugate dual function

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)
∇A(θ) = Epθ (φ(X ))

For each µ ∈ Rn, let A∗(µ) = sup
θ∈Ω
{〈θ, µ〉 − A(θ)}.

A(θ)

θμ
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∇A(θ) = Epθ (φ(X ))

For each µ ∈ Rn, let A∗(µ) = sup
θ∈Ω
{〈θ, µ〉 − A(θ)}.

Theorem 3.4 (Part 1):

1. For each µ ∈M◦, the supremum in A∗(µ) is attained by the vector θ ∈ Ω that
satis�es the moment-matching condition, and A∗(µ) = −H(pθ).

2. For each µ /∈M, we have A∗(µ) = +∞.

3. For each µ ∈M \M◦, we have A∗(µ) = limn→+∞ A∗(µn) taken over any sequence
(µn)n∈N ⊆M◦ converging to µ.
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Sketch of proof

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)
∇A(θ) = Epθ (φ(X ))

A∗(µ) = supθ∈Ω {〈θ, µ〉 − A(θ)}
Since the function A is strictly convex, the function
θ ∈ Ω 7→ 〈θ, µ〉 − A(θ) is strictly concave.

Therefore, θ ∈ Ω is a supremum if and only if

0 =
∂

∂θi
(〈θ, µ〉 − A(θ)), i = 1, 2, . . . , n,

i.e., 0 = µi −
∂

∂θi
A(θ), i = 1, 2, . . . , n,

that is, µ = ∇A(θ).

If µ ∈M◦, there is a unique θ ∈ Ω that satis�es this moment-matching condition
because A is strictly convex

, and we have

H(pθ) = −
∑
x∈Xm

(log pθ(x))pθ(x)

= 〈θ, µ〉 − A(θ).
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Variational representation

pθ(x) = e〈θ,φ(x)〉−A(θ), x ∈ Xm

A(θ) = log
(∑

x∈Xm e〈θ,φ(x)〉)
∇A(θ) = Epθ (φ(X ))

A∗(µ) = supθ∈Ω {〈θ, µ〉 − A(θ)}

Theorem 3.4 (Part 2):

1. The log-partition function has the following variational representation:

A(θ) = sup
µ∈M

{〈θ, µ〉 − A∗(µ)} .

2. For each θ ∈ Ω, the above supremum is attained uniquely at the vector µ ∈M◦
that satis�es the moment-matching condition.
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Conclusion

� Exponential families are parametric sets of probability distributions that appear in
many applications.

� Many classical distributions can be seen as maximum-entropy distributions under a
given moment-matching condition.

� The (log-)partition function and the expectation of the su�cient statistics are hard
to calculate in general, but for exponential families, they can be approximated using
variational inference.
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