
Takeaways of building a
research-oriented system

Collection of little things learned the hard way

Context

� Hi, I’m a research engineer ! (now in a PhD)

� I’m buidling a system to discover the topology of Internet (not published yet)
ü Modern

ü Scalable

ü Fault-tolerent

System design and building

Research ... About design

� Proof of Concept definition

� Constraints extraction

� High-level design

� Technologies selection

� Test cases

Research ... About design

When technologies influence design

� Docker / Docker Compose
ü Take you away from monolithic designs

ü Allow you to incorporate open-source third-parties instead of homecook bricks

ü Make you think about flows and security

APIs

� How the user will interact with your system / program ?
� Command-line ? (Typer, Click)

� Web framework ? (FastAPI, Connexion) ?

� Website ?

Monitoring

� The forgotten yet essential brick

� Metrics vs Logs

� Monitor your system

(i.e., custom code and thirtd-parties), but also underlay

� Alerts to a Slack channel or email

Stacks often used: ELK, Prometheus/Grafana

Security

� Reverse proxy is useful (TLS termination, certificate management, …)

� Let’s encrypt

� Of course, no plain-text password in database! (e.g., Bcrypt)

� APIs Authentication : BasicAuth, JWT. (/!\ Timing attacks, DDOS, …)

(Python) code within a system

Good practices

� Even when working alone, think about your collegues (or you of the future)

ü Python packaging and dependency management (poetry, pipenv)

ü Lint the code (flake8, pylint)

ü Format automatically (black)

ü Test ! The sooner the better (pytest)

ü Security (Bandit)

ü Documentation

Tests

� Pyramid of tests : guide != law

� Test what it makes sense

� Don’t chase a test coverage

Documentation at multiple levels

� Code Comments (but wisely)

� Tests are a form of documentation

� Custom library documentation (ReadTheDoc)

� API documentation (Swagger) for technical users

� Classical end-user high-level documentation (website ?)

Version control

� Github private repository are free

� Track features and issues (Github issues/project, Trello)

� Use of git tags and sementic versionning

� Branching model

CI/CD

� CI: Verification / Testing at commit and pull requests

� CD: Automatic Docker image push

� Different envionments : Dev/Test/Prod

� More advanced use cases : Blue/Green, Canary

Often used: Github Actions, Gitlab CI/CD, TravisCI, Jenkins

Fault-tolerence

� Python package: Tenacity (https://github.com/jd/tenacity)

� Every interface with other components are in the same library

https://github.com/jd/tenacity

Code use-case in depth : Async

� Begin to be wildly used in Python ecosytem

� Very convenient for scalability of distributed systems

� Fully integrated in FastAPI, Typer, …

Questions ? J

