NOI<IA Bell Labs

Multi-winner voting rules

François Durand

6 January 2021, Reading Group Network Theory of the Lincs

Voting rules in general

Voters, candidates (= options to choose from).
Input = ballots, typically:

- Rankings (complete or not, with ties or not),
- Grades,
- Approvals.

Output:

- One candidate (single-winner rules),
- Several candidates (multi-winner rules):
- Committee of fixed size k (this talk),
- Committee of variable size,
- Ranking over the candidates (social welfare functions).

Multi-winner voting rules: old and new problems

Problems that already exist in single-winner rules:

- Condorcet paradox,
- Arrow theorem,
- Gibbard-Satterthwaite theorem.

These problems still exist for multi-winner rules.
But we also have new problems:

- What objective do we pursue?
- Computational complexity of computing the winners.

Preliminary example

Candidates: $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, C_{1}, C_{2}$.

Voters	73	23	2	2
Approvals	$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$	$\mathrm{~B}_{1}, \mathrm{~B}_{2}$	C_{1}	D_{1}

Say we want to elect $\mathrm{k}=4$ candidates. Who should win?

Preliminary example

Candidates: $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}$.

Voters	73	23	2	2
Approvals	$A_{1}, A_{2}, A_{3}, A_{4}$	B_{1}, B_{2}	C_{1}	D_{1}

Say we want to elect $\mathrm{k}=4$ candidates.
Who should win?

Objective	Example of scenario	Winners
Excellence	Recruit $k=4$ taxi drivers	$\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$

Preliminary example

Candidates: $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, C_{1}, C_{2}$.

Voters	73	23	2	2
Approvals	$A_{1}, A_{2}, A_{3}, A_{4}$	B_{1}, B_{2}	C_{1}	D_{1}

Say we want to elect $\mathrm{k}=4$ candidates.
Who should win?

Objective	Example of scenario	Winners
Excellence	Recruit $k=4$ taxi drivers	$\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$
Proportionality	Elect a parliament of $k=4$ members	$\left\{A_{1}, A_{2}, A_{3}, B_{1}\right\}$

Preliminary example

Candidates: $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, C_{1}, C_{2}$.

Voters	73	23	2	2
Approvals	$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$	$\mathrm{~B}_{1}, \mathrm{~B}_{2}$	C_{1}	D_{1}

Say we want to elect $\mathrm{k}=4$ candidates.
Who should win?

Objective	Example of scenario	Winners
Excellence	Recruit $k=4$ taxi drivers	$\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$
Proportionality	Elect a parliament of $k=4$ members	$\left\{A_{1}, A_{2}, A_{3}, B_{1}\right\}$
Diversity	Choose locations for $k=4$ defibrillators	$\left\{A_{1}, B_{1}, C_{1}, D_{1}\right\}$

Plan

Zoology of rules
Best-k rules
Committee scoring rules
Other rules

Discussion
A word on computational complexity
Which rule for which objective?

Conclusion

Plan

Zoology of rules
Best-k rules
Committee scoring rules Other rules

Discussion
A word on computational complexity
Which rule for which objective?

Conclusion

Our running example

Voters	27	12	5	22	21	13
	A	C	C	D	E	E
Rankings	B	D	E	C	A	B
	C	E	D	B	B	C
	D	B	A	E	D	A
	E	A	B	A	C	D
Approvals	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	C	$\mathrm{A}, \mathrm{D}, \mathrm{C}, \mathrm{E}$	$\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$	$\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}$	E

We want to elect a committee of size $k=2$.

Plan

Zoology of rules
Best-k rules

Committee scoring rules

Other rules

Discussion

A word on computational complexity

Which rule for which objective?

Conclusion

Best-k Rules

Recipe

Take a single-winner voting rule that produces scores (or a ranking over the candidates).
Output the k candidates with the best scores.

Single Non-Transferable Voting (SNTV)
Principle: best k candidates by Plurality.

Voters	27	12	5	22	21	13
Rankings	A	C	C	D	E	E
	B	D	E	C	A	B
	C	E	D	B	B	C
	D	B	A	E	D	A
	E	A	B	A	C	D

Example: $\operatorname{score}(A)=1 \times 27=27$.

Candidate	A	B	C	D	E
Score	$\mathbf{2 7}$	0	17	22	$\mathbf{3 4}$

Winning committee: $S=\{A, E\}$.

Bloc voting

Principle: best k candidates by k-approval (reminder: we consider $k=2$).

Voters	27	12	5	22	21	13
Rankings	A	C	C	D	E	E
	B	D	E	C	A	B
	C	E	D	B	B	C
	D	B	A	E	D	A
	E	A	B	A	C	D

Example: $\operatorname{score}(A)=1 \times 27+1 \times 21=48$.

Candidate	A	B	C	D	E
Score	$\mathbf{4 8}$	$\mathbf{4 0}$	39	34	39

Winning committee: $S=\{A, B\}$.

best-k Borda

Principle: best k candidates by Borda rule.

Voters	27	12	5	22	21	13
Rankings	A	C	C	D	E	E
	B	D	E	C	A	B
	C	E	D	B	B	C
	E	B	A	E	D	A

Example: $\operatorname{score}(A)=4 \times 27+0 \times 12+1 \times 5+0 \times 22+3 \times 21+1 \times 13=189$.

Candidate	A	B	C	D	E
Score	189	$\mathbf{2 1 8}$	$\mathbf{2 1 4}$	182	197

Winning committee: $S=\{B, C\}$.

best-k Approval Voting

Principle: best k candidates by Approval Voting.

Voters	27	12	5	22	21	13
Approvals	A, B, C, D	C	A, C, D, E	B, C, D, E	A, B, D, E	E

Example: $\operatorname{score}(A)=1 \times 27+1 \times 5+1 \times 21=53$.

Candidate	A	B	C	D	E
Score	53	$\mathbf{7 0}$	66	$\mathbf{7 5}$	61

Winning committee: $S=\{B, D\}$.

Plan

Zoology of rules
Best-k rules
Committee scoring rules
Other rules

Discussion
 A word on computational complexity
 Which rule for which objective?

Conclusion

Committee scoring rules

Recipe

Find a way to make each voter v assign a score to each possible committee S : scorev(S).

Output the committee with the best score.
N.B.: all the best-k rules seen before belong to this family. We have in this case:

$$
\operatorname{score}_{\mathrm{v}}(\mathrm{~S})=\sum_{\mathrm{c} \in \mathrm{~S}} \operatorname{score}_{\mathrm{v}}(\mathrm{c}) .
$$

Example on next slide...
best-k Borda, seen as a committee scoring rule
Reminders: - the winning committee was $S=\{B, C\}$,

$$
\text { - } \operatorname{score}(S=\{B, C\})=\operatorname{score}(B)+\operatorname{score}(C)=432
$$

Let us compute score $(S=\{B, C\})$ another way:

Voters	27	12	5	22	21	13
	A	C	C	D	E	E
Rankings	\mathbf{B}	D	E	C	A	B
	C	E	D	B	B	C
	D	B	A	E	D	A
Score $_{\mathrm{V}}(\mathrm{S})$	E	A	B	A	C	D
$\|\mathrm{V}\| \cdot \mathrm{score}_{\mathrm{V}}(\mathrm{S})$	135	60	20	110	42	65

$\Rightarrow \operatorname{score}(S=\{B, C\})=135+60+20+110+42+65=432$.

Proportional Approval Voting (PAV)

Principle: $\operatorname{score}_{v}(S)=1+1 / 2+\ldots+1 / i$, where i is the number of candidates in the committee S approved by voter v.

Winning committee: $S=\{C, D\}$ (believe me).
For the example, let us compute score $(S=\{C, D\})$:

Voters	27	12	5	22	21	13
Approvals	A, B, C, D	\mathbf{C}	A, D, C, E	B, C, D, E	A, B, D, E	E
Score $_{\mathrm{v}}(\mathrm{S})$	1.5	1	1.5	1.5	1	0
$\|\mathrm{~V}\| \cdot \mathrm{score}_{\mathrm{v}}(\mathrm{S})$	40.5	12	7.5	33	21	0

$\Rightarrow \operatorname{score}(S=\{C, D\})=40.5+12+7.5+33+21+0=114$.

Borda Chamberlin-Courant (a.k.a. just "Chamberlin-Courant") Principle: $\operatorname{score}_{\mathrm{v}}(\mathrm{S})=\operatorname{Borda}_{\mathrm{v}}(\mathrm{c})$, where c is the candidate that voter v likes best in the committee S .

Winning committee: $S=\{A, C\}$ (believe me).
For the example, let us compute score $(S=\{A, C\})$:

Voters	27	12	5	22	21	13
	A	C	C	D	E	E
Rankings	B	D	E	C	A	B
	C	E	D	B	B	C
	D	B	A	E	D	A
Score $_{\mathrm{V}}(\mathrm{S})$	E	A	B	A	C	D
$\|\mathrm{V}\| \cdot \operatorname{Score}_{\mathrm{V}}(\mathrm{S})$	108	48	4	3	3	2

$\Rightarrow \operatorname{score}(S=\{A, C\})=108+48+20+66+63+26=331$.

Approval Chamberlin-Courant (a.k.a. Approval-CC)

Principle: $\operatorname{score}_{\mathrm{v}}(\mathrm{S})=\operatorname{Approval}_{\mathrm{v}}(\mathrm{c})$,
where c is the candidate that voter v likes best in the committee S .
Winning committee: $S=\{C, E\}$ (believe me).
For the example, let us compute score $(S=\{C, E\})$:

Voters	27	12	5	22	21	13
Approvals	A, B, C, D	\mathbf{C}	A, C, D, E	B, C, D, E	A, B, D, E	\mathbf{E}
Score $_{\mathrm{v}}(\mathrm{S})$	1	1	1	1	1	1
$\|\mathrm{~V}\| \cdot \mathrm{score}_{\mathrm{v}}(\mathrm{S})$	27	12	5	22	21	13

$\Rightarrow \operatorname{score}(S=\{C, E\})=27+12+5+22+21+13=100$.

Committee scoring rules: theory

score $_{\mathrm{v}}(\mathrm{c})=$?

- Plurality (SNTV),
- k-approval (Bloc),
- Borda (k-Borda, Borda-CC),
- Approval (best-k Approval, PAV, Approval-CC).
$\operatorname{score}_{\mathrm{v}}(\mathrm{S})=$?
- $\sum_{c \in S}$ Score $_{\mathrm{v}}(\mathrm{c})$ (best-k rules),
- $\sum_{i} \alpha_{i} \cdot \operatorname{score}_{\mathrm{v}}\left(\mathrm{c}_{\mathrm{i}}\right)$, where c_{i} is the i -th preferred candidate of v in $\mathrm{S}(\mathrm{PAV})$.
- $\max _{c \in S} \operatorname{score}_{\mathrm{V}}(\mathrm{c})$ (Chamberlin-Courant).
N.B.: all are particular cases of the second one, called order-weighted average.
$\operatorname{score}(S)=\sum_{\mathrm{v}}$ score $_{\mathrm{v}}(\mathrm{S})$ (but we could choose otherwise).

Committee scoring rules: sum-up table

	$\operatorname{score}_{\mathrm{v}}(\mathrm{S})=$		
$\operatorname{score}_{\mathrm{v}}(\mathrm{c})=$	$\operatorname{sum}_{c \in S} \operatorname{Score}_{\mathrm{V}}(\mathrm{c})$	$\sum_{i} \alpha_{i} \cdot \operatorname{score}_{v}\left(\mathrm{c}_{\mathrm{i}}\right)$	$\max _{\mathrm{c} \in \mathrm{S}} \operatorname{Score}_{\mathrm{v}}(\mathrm{c})$
Plurality	SNTV		
k-approval	Bloc		
Borda	best-k Borda		Borda-CC
Approval	best-k Approval	PAV	Approval-CC

Plan

Zoology of rules
Best-k rules
Committee scoring rules
Other rules

Discussion
 A word on computational complexity
 Which rule for which objective?

Conclusion

Other rules

Not all multi-winner voting rules are committee scoring rules!

Iterated single-winner rules

- Elect one candidate by the single-winner rule.
- Remove her from the ballots and iterate.

Example: with Plurality.

Voters	27	12	5	22	21	13
Rankings	A	C	C	D	E	E
	B	D	E	C	A	B
	C	E	D	B	B	C
	D	B	A	E	D	A
	E	A	B	A	C	D

\Rightarrow Winners $=\{\}.$,

Iterated single-winner rules

- Elect one candidate by the single-winner rule.
- Remove her from the ballots and iterate.

Example: with Plurality.

Voters	27	12	5	22	21	13
Rankings	A	C	C	D		
	B	D		C	A	B
	C		D	B	B	C
	D	B	A		D	A

\Rightarrow Winners $=\{, E\}$.

Iterated single-winner rules

- Elect one candidate by the single-winner rule.
- Remove her from the ballots and iterate.

Example: with Plurality.

Voters	27	12	5	22	21	13
Rankings	A	C	C	D		
	B	D		C	A	B
	C		D	B	B	C
	D	B	A		D	A

\Rightarrow Winners $=\{A, E\}$.

Single Transferable Vote (STV)

- Quota $_{k}=\frac{v}{k+1}$. Ex: Quota ${ }_{1}=50$ Quota $_{2}=33.3$, Quota $_{3}=25 \ldots$
- Elect all candidates with more than Quota top-votes and remove Quota $_{k}$ voters who vote for each of them (see below). Iterate.
- If no candidate has the quota, eliminate the candidate with least top-votes.

Voters	27	12	5	22	21	13
Rankings	A	C	C	D	E	E
	B	D	E	C	A	B
	C	E	D	B	B	C
	D	B	A	E	D	A
	E	A	B	A	C	D

\Rightarrow Winners $=\{, \quad\}$.

Single Transferable Vote (STV)

- Quota $_{k}=\frac{v}{k+1}$. Ex: Quota ${ }_{1}=50$ Quota $_{2}=33.3$, Quota $_{3}=25 \ldots$
- Elect all candidates with more than Quotak top-votes and remove Quota $_{k}$ voters who vote for each of them (see below). Iterate.
- If no candidate has the quota, eliminate the candidate with least top-votes.

Voters	27	12	5	22	0.41	0.25
Rankings	A	C	C	D		
	B	D		C	A	B
	C		D	B	B	C
	D	B	A		D	A
		A	B	A	C	D

\Rightarrow Winners $=\{\quad, E\}$.

Single Transferable Vote (STV)

- Quota $_{k}=\frac{v}{k+1}$. Ex: Quota ${ }_{1}=50$ Quota $_{2}=33.3$, Quota $_{3}=25 \ldots$
- Elect all candidates with more than Quota top-votes and remove Quota $_{k}$ voters who vote for each of them (see below). Iterate.
- If no candidate has the quota, eliminate the candidate with least top-votes.

Voters	27	12	5	22	0.41	0.25
	A			D		
Rankings	B	D			A	B
		D	B	D	B	B
		A	B	A	D	A
				D		

\Rightarrow Winners $=\{\quad, E\}$.

Single Transferable Vote (STV)

- Quota $_{\mathrm{k}}=\frac{\mathrm{v}}{\mathrm{k}+1}$. Ex: Quota $_{1}=50$, Quota $_{2}=33.3$, Quota $_{3}=25 \ldots$
- Elect all candidates with more than Quota top-votes and remove Quota $_{k}$ voters who vote for each of them (see below). Iterate.
- If no candidate has the quota, eliminate the candidate with least top-votes.

Voters	27	12	5	22	0.41	0.25
	A			D		
Rankings	B	D			A	B
		D	B	D	B	B
		A	B	A	D	A
				D		

\Rightarrow Winners $=\{D, E\}$.

Condorcet rules

Principle: if there exists S of size k such that any candidate in S beats any candidate out of S, then S must be selected.

Weighted majority matrix of our example:

	A	B	C	D	E
A		$\mathbf{5 3}$	48	$\mathbf{6 1}$	27
B	47		$\mathbf{6 1}$	$\mathbf{6 1}$	49
C	$\mathbf{5 2}$	39		$\mathbf{5 7}$	$\mathbf{6 6}$
D	39	39	43		$\mathbf{6 1}$
E	$\mathbf{7 3}$	$\mathbf{5 1}$	34	39	

Here there is no such set S, because $A>_{M_{a j}} B>_{M_{a j}} C>_{M_{a j}} D>_{M_{a j}} E>_{M_{a j}} A$. The winning committee will depend on the particular Condorcet rule we use (beyond the scope of this talk).

Borda Monroe (a.k.a. just "Monroe")

Variant of Chamberlin-Courant ensuring that not too many voters are "represented" by the same candidate. Beyond the scope of this talk.

Plan

Zoology of rules
Best-k rules
Committee scoring rules
Other rules

Discussion
A word on computational complexity Which rule for which objective?

Conclusion

Plan

Zoology of rules
Best-k rules
Committee scoring rules
Other rules

Discussion
A word on computational complexity
Which rule for which objective?

Conclusion

A word on computational complexity

Not computable in polynomial time:

- PAV,
- Monroe (in general),
- Chamberlin-Courant (in general).

Sequential variant: start from $S=\varnothing$ and add candidates one by one greedily.
Reverse sequential variant: start from $S=\{$ all the candidates $\}$ and remove candidates one by one greedily.

Other approaches: fixed-parameter tractability (FPT), heuristics.

Plan

Zoology of rules
Best-k rules
Committee scoring rules
Other rules

Discussion
A word on computational complexity
Which rule for which objective?

Conclusion

New running example

Voters	66	12	11	10	1
Rankings	A_{1}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	C_{1}
	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	C_{2}
	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{1}$	C_{3}
	\vdots	\vdots	\vdots	\vdots	\vdots
	$\mathrm{~B}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$
	\vdots	\vdots	\vdots	\vdots	\vdots
	C_{1}	C_{1}	C_{1}	C_{1}	$\mathrm{~B}_{1}$
	\vdots	\vdots	\vdots	\vdots	\vdots
Approvals	All A_{i}	All B_{i}	All B_{i}	All B_{i}	All C_{i}

Assumption: we want to elect $\mathrm{k}=3$ candidates.

Excellence

Intuition: select the "best" candidates based on some criterion.
\Rightarrow An individual notion about each elected candidate (rather than a notion about the elected committee as a whole).

Examples:

Criterion	Voting rule
Number of approvals	best-k Approval
Borda score	best-k Borda
Being preferred by a majority of voters	Condorcet rules

Excellence: k-best Approval

Voters	66	33	1
Approvals	All A_{i}	All B_{i}	All C_{i}

Winners = any three A_{i} 's (depending on the tie-breaking rule).
Rationale: each A_{i} is "better" than any non-A candidate, because more approved.

Excellence: Condorcet Rules

Voters	66	12	11	10	1
Rankings	A_{1}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	C_{1}
	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	C_{2}
	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{1}$	C_{3}
	\vdots	\vdots	\vdots	\vdots	\vdots
	$\mathrm{~B}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$
	\vdots	\vdots	\vdots	\vdots	\vdots
	C_{1}	C_{1}	C_{1}	C_{1}	$\mathrm{~B}_{1}$
	\vdots	\vdots	\vdots	\vdots	\vdots
Approvals	All $_{\mathrm{i}}$	All B_{i}	All B_{i}	All B_{i}	All C_{i}

Winners $=\left\{A_{1}, A_{2}, A_{3}\right\}$.
Rationale: each of them is "better" than (= preferred by a majority to) any non-elected candidate.

Excellence: Concluding Remark

- The two rules in previous slides give (approximately) the same outcome.
- But for some other rules that can be defended as promoting "excellence", the outcome could be different: for example, k -best Plurality would elect $\left\{\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{~B}_{2}\right\}$.
- Excellence is not a formally defined notion.

Proportionality

Intuition: more numerous voters should be "represented" by more candidates.
If voters and candidates can be partitioned into several (political) parties, such that all voters of a party prefers all candidates of their party to all other candidates, then each party should have a number of seats proportional to the number of voters in her party (up to roundings).
\Rightarrow Proportionality is a formally defined notion that says what should be the outcome in some particular profiles (but not all of them).

Proportionality: Proportional Approval Voting (PAV)

Voters	66	33	1
Approvals	All A_{i}	${\text { All } \mathrm{B}_{\mathrm{i}}}$	All C_{i}

$$
\begin{aligned}
& \Delta_{\mathrm{S}}\left(\mathrm{~A}_{\mathrm{i}}\right)=66 \\
& \Delta_{\mathrm{S}}\left(\mathrm{~B}_{\mathrm{i}}\right)=33 \\
& \Delta_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{i}}\right)=1
\end{aligned}
$$

Winners $=\{\quad, \quad\}$.

Proportionality: Proportional Approval Voting (PAV)

Voters	66	33	1
Approvals	All A_{i}	${\text { All } \mathrm{B}_{\mathrm{i}}}$	All C_{i}

$$
\begin{aligned}
& \Delta_{\mathrm{S}}\left(\mathrm{~A}_{\mathrm{i}}\right)=66 \\
& \Delta_{\mathrm{S}}\left(\mathrm{~B}_{\mathrm{i}}\right)=33 \\
& \Delta_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{i}}\right)=1
\end{aligned}
$$

\Rightarrow Elect A_{1} (for example).
Winners $=\left\{A_{1}, \quad, \quad\right\}$.

Proportionality: Proportional Approval Voting (PAV)

Voters	66	33	1
Approvals	All A_{i}	All B_{i}	All C_{i}

$$
\left.\begin{array}{l}
\Delta_{S}\left(A_{i}\right)=66 / 2=33 \\
\Delta_{S}\left(B_{i}\right)=33 \\
\Delta_{S}\left(C_{i}\right)=1
\end{array}\right\} \begin{aligned}
& \text { Here is the trick that makes PAV proportional: } \\
& \text { Adding a second } A_{i} \text { or a first } B_{i} \text { gives as many points. }
\end{aligned}
$$

Winners $=\left\{A_{1}, \quad, \quad\right\}$.

Proportionality: Proportional Approval Voting (PAV)

Voters	66	33	1
Approvals	All A_{i}	All B_{i}	All C_{i}

$$
\left.\begin{array}{l}
\Delta_{\mathrm{S}}\left(\mathrm{~A}_{\mathrm{i}}\right)=66 / 2=33 \\
\Delta_{\mathrm{S}}\left(\mathrm{~B}_{\mathrm{i}}\right)=33 \\
\Delta_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{i}}\right)=1
\end{array}\right\} \begin{aligned}
& \text { Here is the trick that makes PAV proportional: } \\
& \text { Adding a second } A_{i} \text { or a first } \mathrm{B}_{\mathrm{i}} \text { gives as many points. }
\end{aligned}
$$

\Rightarrow Elect A_{2} (for example).
Winners $=\left\{A_{1}, A_{2}, \quad\right\}$.

Proportionality: Proportional Approval Voting (PAV)

Voters	66	33	1
Approvals	All A_{i}	All B_{i}	All C_{i}

$$
\begin{aligned}
& \Delta_{\mathrm{S}}\left(\mathrm{~A}_{\mathrm{i}}\right)=66 / 3=22 \\
& \Delta_{\mathrm{S}}\left(\mathrm{~B}_{\mathrm{i}}\right)=33 \\
& \Delta_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{i}}\right)=1
\end{aligned}
$$

Winners $=\left\{A_{1}, A_{2}, \quad\right\}$.

Proportionality: Proportional Approval Voting (PAV)

Voters	66	33	1
Approvals	All A_{i}	All B_{i}	All C_{i}

$$
\begin{aligned}
& \Delta_{\mathrm{S}}\left(\mathrm{~A}_{\mathrm{i}}\right)=66 / 3=22 \\
& \Delta_{\mathrm{S}}\left(\mathrm{~B}_{\mathrm{i}}\right)=33 \\
& \Delta_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{i}}\right)=1
\end{aligned}
$$

\Rightarrow Elect B_{1} (for example).
Winners $=\left\{A_{1}, A_{2}, B_{1}\right\}$.

Proportionality: Proportional Approval Voting (PAV)

Voters	66	33	1
Approvals	All A_{i}	All B_{i}	All C_{i}

$$
\begin{aligned}
& \Delta_{\mathrm{S}}\left(\mathrm{~A}_{\mathrm{i}}\right)=66 / 3=22 \\
& \Delta_{\mathrm{S}}\left(\mathrm{~B}_{\mathrm{i}}\right)=33 \\
& \Delta_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{i}}\right)=1
\end{aligned}
$$

\Rightarrow Elect B_{1} (for example).
Winners $=\left\{A_{1}, A_{2}, B_{1}\right\}$.
For $k=6$, we would have $4 A_{i}$'s and $2 B_{i}$'s because:

$$
\Delta_{\mathrm{S}}\left(\text { fourth } \mathrm{A}_{\mathrm{i}}\right)=66 / 4=\Delta_{\mathrm{S}}\left(\text { second } \mathrm{B}_{\mathrm{i}}\right)=33 / 2
$$

Proportionality: Single Transferable Vote (STV)
$\mathrm{k}=3 \Rightarrow$ Quota $_{\mathrm{k}}=\frac{100}{3+1}=25$.

Voters	66	12	11	10	1
	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{1}}$
	A_{2}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	C_{2}
	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{1}$	C_{3}
Rankings	\vdots	\vdots	\vdots	\vdots	\vdots
	B_{1}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$
	\vdots	\vdots	\vdots	\vdots	\vdots
	C_{1}	C_{1}	C_{1}	C_{1}	$\mathrm{~B}_{1}$
	\vdots	\vdots	\vdots	\vdots	\vdots

Winners $=\{\quad, \quad\}$.

Proportionality: Single Transferable Vote (STV)
$\mathrm{k}=3 \Rightarrow$ Quota $_{\mathrm{k}}=\frac{100}{3+1}=25$.

Voters	41	12	11	10	1
		$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{1}}$
	$\mathbf{A}_{\mathbf{2}}$	B_{2}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	C_{2}
	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{1}$	C_{3}
Rankings	\vdots	\vdots	\vdots	\vdots	\vdots
	B_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{2}$
	\vdots	\vdots	\vdots	\vdots	\vdots
	C_{1}	C_{1}	C_{1}	C_{1}	$\mathrm{~B}_{1}$
	\vdots	\vdots	\vdots	\vdots	\vdots

Winners $=\left\{A_{1}, \quad, \quad\right\}$.

Proportionality: Single Transferable Vote (STV)
$\mathrm{k}=3 \Rightarrow$ Quota $_{\mathrm{k}}=\frac{100}{3+1}=25$.

Voters	16	12	11	10	1
		$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{1}}$
		B_{2}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	C_{2}
	$\mathbf{A}_{\mathbf{3}}$	B_{3}	$\mathrm{~B}_{\mathbf{3}}$	B_{1}	C_{3}
Rankings	\vdots	\vdots	\vdots	\vdots	\vdots
	B_{1}	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$
	\vdots	\vdots	\vdots	\vdots	\vdots
	C_{1}	C_{1}	C_{1}	C_{1}	$\mathrm{~B}_{1}$
	\vdots	\vdots	\vdots	\vdots	\vdots

Winners $=\left\{A_{1}, A_{2}, \quad\right\}$.

Proportionality: Single Transferable Vote (STV)
$\mathrm{k}=3 \Rightarrow$ Quota $_{\mathrm{k}}=\frac{100}{3+1}=25$.

Voters	16	12	11	10	1
		$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{1}}$
		B_{2}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	
	$\mathbf{A}_{\mathbf{3}}$	B_{3}	$\mathrm{~B}_{3}$	$\mathrm{~B}_{1}$	
	$\mathrm{~B}_{1}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$
	\vdots				
	C_{1}	C_{1}	C_{1}	C_{1}	$\mathrm{~B}_{1}$
					\vdots

Winners $=\left\{A_{1}, A_{2}, \quad\right\}$.

Proportionality: Single Transferable Vote (STV)
$k=3 \Rightarrow$ Quota $_{k}=\frac{100}{3+1}=25$.

Voters	16	12	11	10	1
		$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	
		B_{2}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	
	$\mathbf{A}_{\mathbf{3}}$	B_{3}	$\mathrm{~B}_{3}$	$\mathrm{~B}_{1}$	
Rankings					
	B_{1}	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathbf{A}_{\mathbf{3}}$
	\vdots				
					B_{1}
					\vdots

Winners $=\left\{A_{1}, A_{2}, \quad\right\}$.

Proportionality: Single Transferable Vote (STV)
$k=3 \Rightarrow$ Quota $_{k}=\frac{100}{3+1}=25$.

Voters	16	12	11	10	1
		$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{2}}$	
	$\mathbf{A}_{\mathbf{3}}$	B_{2}	$\mathrm{~B}_{1}$	\mathbf{B}_{1} Rankings	B_{1}
\vdots	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathbf{A}_{\mathbf{3}}$	
					B_{1}
					\vdots

Winners $=\left\{A_{1}, A_{2}, \quad\right\}$.

Proportionality: Single Transferable Vote (STV)
$\mathrm{k}=3 \Rightarrow$ Quota $_{\mathrm{k}}=\frac{100}{3+1}=25$.

Voters	16	12	11	10	1
Rankings	B_{2}	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathbf{A}_{\mathbf{3}}$
				$\mathbf{B}_{\mathbf{2}}$	

Winners $=\left\{A_{1}, A_{2}, \quad\right\}$.

Proportionality: Single Transferable Vote (STV)
$k=3 \Rightarrow$ Quota $_{k}=\frac{100}{3+1}=25$.

Voters	16	12	11	10	1
Rankings	B_{2}	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathbf{A}_{\mathbf{3}}$
				$\mathbf{B}_{\mathbf{2}}$	

Winners $=\left\{A_{1}, A_{2}, B_{2}\right\}$.

Proportionality: Single Transferable Vote (STV)
$k=3 \Rightarrow$ Quota $_{\mathrm{k}}=\frac{100}{3+1}=25$.

Voters	16	12	11	10	1
Rankings	B_{2}	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{3}$	$\mathbf{A}_{\mathbf{3}}$
			$\mathbf{B}_{\mathbf{2}}$		

Winners $=\left\{A_{1}, A_{2}, B_{2}\right\}$.
For $k=6$, we would have $\left\{A_{1}, A_{2}, A_{3}, A_{4}, B_{2}, B_{1}\right\}$.

Diversity

Intuition: as many voters as possible should be well "represented" by at least one candidate.

This is not a formally defined notion.

Diversity: Approval Chamberlin-Courant (Approval-CC)

Voters	66	33	1
Approvals	All A_{i}	All B_{i}	All C_{i}

Winners $=\left\{\right.$ any A_{i}, any B_{i}, any $\left.C_{i}\right\}$.
Two possible rationales:

- Once A-voters have one candidate A_{i} in the outcome, they are as happy as they can be.
- Or they could be more happy, but it is more important to represent as many voters as possible, including the only C-voter.

Diversity: Concluding Remark

Classic example to justify diversity: choosing movies for the catalogue of a short plane travel, because each passenger will watch only one movie. But...

Assume the following poll result for a sample of potential passengers:

Voters	54.4%	27.2%	18.1%	0.1%	0.1%	0.1%
Approvals	Genre A	Genre B	Genre C	Genre D	Genre E	Genre F

For $k=6$, do you really want:

- One movie of each genre?
- Or give at least two possible choices for the people who like genre A?
\Rightarrow Diversity is a very extreme point of view, giving a big power to arbitrary small minorities.

Summary: Which rule for which objective?

Arguably:

- Excellence (select "good" candidates):

Best-k rules, iterated single-winner rules, Condorcet rules.

- Proportionality (more voters should be represented by more candidates):

PAV, STV, Monroe.

- Diversity (as many voters as possible should be represented):
Borda-CC, Approval-CC.

In fact, since excellence and diversity are not formally defined, there are no clear frontiers between these three objectives...

Plan

Zoology of rules
Best-k rules
Committee scoring rules
Discussion
A word on computational complexity
Which rule for which objective?
Conclusion

- Multi-winner rules differ on their objective: excellence, proportionality or diversity.
- A large class of rules is given by the committee scoring rules.
- Some interesting rules are computationally hard to compute.

Bibliography: P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Multiwinner voting: A new challenge for social choice theory. In U. Endriss, editor, Trends in Computational Social Choice. Al Access, 2017.

Thanks For Your Attention!

NOKIA

