
© 2019 Nokia – Secret and Confidential1

Edit distances, string alignments and
dynamic programming

Marc-Olivier Buob, Maxime Raynal (Nokia Bell Labs/ AAAID)

LINCS, Network theory, February 3th, 2021

<Document ID: change ID in footer or remove>

2

Bell Labs

The human problem
Find the differences between two input strings

© 2019 Nokia - Confidential3

Wide range of applications
Use cases

• Computer science

• File comparison (diff, git, ...)

• Approximate string matching

• spell checkers,

• fuzzy string search,

• fraud detection...

• Optical character recognition

• Bioinformatic

• Nucleic acid sequence and protein alignment

• Linguistic

• Distance between two languages

© 2019 Nokia - Confidential4

Used to "count" the number of differences
Edit operations

• Insertion

• ABCDE vs ABXCDE

• Deletion

• ABXCDE vs ABCDE

• Substitution

• ABCDE vs ABXDE

• Transposition

• Cyclic permutation

• 1234 vs 2413

• ABCD vs CBAD

© 2019 Nokia - Confidential5

Support/count a subset of edit operations
Popular edit distances

Distance Insertion Deletion Substitution Transposition

Levenstein 🗸 🗸 🗸

Damerau-Levenstein 🗸 🗸 🗸 … of consecutive char pairs

LCS 🗸 🗸

Hamming 🗸

Jaro-Winkler … of "closed" chars

• As Hamming distance only supports substitution, it can only compare two strings of same length.

• To compute distances involving insertion and deletion, we typically rely on dynamic programming.

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Jaro_distance

© 2019 Nokia – Secret and Confidential6

Longest common subsequence (LCS)

<Document ID: change ID in footer or remove>

This part presents:

• the LCS problem,

• the underlying model graph (called edit graph)

• the resulting dynamic programming model.

• the main algorithms related to LCS problem.

© 2019 Nokia - Confidential7

An optimization method and a computer programming method
Dynamic programming (Richard Bellman, 1950)

• Key idea: break down a complex problem into a simpler subproblems in

a recursive manner.

• Scope: it applies on any problem having an optimal

substructure and overlapping subproblems.

• Optimal substructure means that the solution can be obtained by the

combination of optimal solutions to its sub-problems.

• Overlapping sub-problems means that sub-problems dependencies form a
DAG, by contrast to divide and conquer (D&C) where this graph is a tree.

• DP: Fibonnacci series (Fi = Fi−1 + Fi−2), Dijkstra algorithm, LCS.

• D&C: merge sort, quick sort.

https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

© 2019 Nokia - Confidential8

Definitions
The LCS (Longest Common Subsequence) problem, Maier, 1978

• Consider an arbitrary word w. Any sub-word obtained by selecting a subset of characters with
distinct index and sorted by increasing index is a said to be a subsequence.

• Example: ACEF is a subsequence of ABCDEFG

• Consider two strings X and Y. If s is a subsequence of X and Y, it is said to be a common
subsequence of X and Y

• Example: ABC is a common subsequence of ABCABBA and CDABAC

• The LCS problem aims at finding a longest common subsequence of two words.

• Example: CABA is the LCSs of ABCABBA and CDABAC.

• In general, two words may have several LCSs.

• How to determine them?

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

© 2019 Nokia - Confidential9

Model
Edit graph

• Consider two words:

• X, of length m (e.g. ABCABBA)

• Y, of length n (e.g. CDABAC)

• The edit graph is defined as follows:

• Vertices:

• Each (i, j) ∈ {0 … m} x {0 … n}

• Arcs:

• Horizontal: from (i, j) to (i, j+1) (insertion)

• Vertical: from (i, j) to (i+1, j) (deletion)

• Diagonal : from (i, j) to (i+1, j+1) if and only if

X[i] == Y[j] (match)

© 2019 Nokia - Confidential10

Find optimal string alignments
Edit graph

• The LCS must entirely consider X and

Y ⇒ Path from (0, 0) to (m, n)

• Horizontal and diagonal arc = edit

operation

• Path = set of editions to move from X to

Y (and conversely) called alignments

• The LCS maximizes the #matching

characters ⇒ The path maximizes the

#diagonal edges.

© 2019 Nokia - Confidential11

Edit graph

• Paths maximizing #diagonal arcs reveal

LCS of X=ABCABBA and Y=CDABAC.

• Here: ABCDABBAC.

• To transform X into Y:

• 3 insertions

• 2 deletions

• 4 matches (LCS = CABA)

• LCS(X, Y) = 4

LCS extraction

© 2019 Nokia - Confidential12

Edit graph ~ DP model
LCS and dynamic programming

• Initialization: i = 0 or j = 0

• Empty LCS.

• Recursion (from (n, n')): i > 0 and j > 0

• Prefer diagonal arc (if any):

• Intuition: It's always better to go through a diagonal arc

• Score : +1

• Otherwise: horizontal and vertical arcs.

• Intuition: Best effort fallback

• Score : +0

Concatenation

© 2019 Nokia - Confidential13

Algorithm
LCS and dynamic programming

• Compute recursively B and C where:

• C[i, j] stores the score obtained for
LCS(X[:i],Y[:j])

• B[i, j] stores an optimal predecessor of (i, j)
predecessor chosen to obtain C[i, j]

• Optimization: you could only store the

two last rows of C.

function LCSLength(X[1..m], Y[1..n])

C = array(0..m, 0..n)

for i := 0..m C[i,0] = 0

for j := 0..n C[0,j] = 0

for i := 1..m

for j := 1..n

if X[i] = Y[j]

C[i,j] := C[i-1,j-1] + 1

else

C[i,j] := max(C[i,j-1], C[i-1,j])

return C[m,n]

© 2019 Nokia - Confidential14

Custom score function

Needleman Wunsh, 1970

• Problem: In LCS: match: +1 ; mismatch: +0. What if two
characters are similar?

• Key idea: build diagonal arcs (from (i, j) to (i+1, j+1)), and
weight them using a score function s:

• Match: s(a, b) > 0 if a and b are equal or similar

• Mismatch: s(a, b) = D, where D is a (negative) constant.

• Trick: update DP model as follows:

• Initialization:

• C[i, 0] are initialized to –D.i

• C[0, j] are initialized to –D.j

• Recursion:

• C[i, j] = max(C[i-1, j-1] + s(a, b), C[i, j-1] + D, C[i-1, j] + D)

Example taken from [wikipedia]

• D = -1 if indel

• If a = b: s(a, b) = 1

• If a ~ b: s(a, b) = –1

• We only pay –1 (instead of
2.D) when aligning "similar"

characters.

https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm

© 2019 Nokia - Confidential15

C[i, j]

C[i-1, j-1]

Local alignment
Smith-Waterman algorithm,1981

• Problem: how to find the best local alignment

(between any pair of vertices of the edit graph)

• Trick: uses an extended neighborhood to compute C

and define a penalty depending on the gap length.

• Initialization:

• C[i, 0] and C[0, j] are initialized to 0.

• Recursion:

• C[i, j] = max(

C[i-1, j-1] + s(a, b),

max(C[i, j'-1] + D[j – j'] such that j' < j) ,

max(C[i'-1, j] + D[k – k'] such that i' < i)

)

max(C[i, j'-1] + D[j – j'] such that j' < j)

max(C[i'-1, j] + D[k – k'] such that i' < i)

https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm

© 2019 Nokia – Secret and Confidential16

Back to the other edit distances

<Document ID: change ID in footer or remove>

This part presents:

• the Hamming distance

• the Levenshtein distance

• the Damerau-Levenstein distance

• I skip the Jaro-Winkler distance, see wikipedia if you want further details...

© 2019 Nokia - Confidential17

Count matching characters at fixed indices
Hamming distance, 1950

• Consider two words X and Y of length m and n, such that m = n. The Hamming distance
is defined by:

hamming(a, b) = ∑ 0(X[i], Y[i]) where 0(a, b) = 0 if a = b, 1 otherwise

• Interpretation: The Hamming distance counts the #mismatching characters).

• Examples:

• "karolin" and "kathrin" is 3.

• "karolin" and "kerstin" is 3.

• The Hamming distance can be computed in O(n) with a footprint in O(1). It's significantly
cheaper than computing |a| - |LCS(X, Y)| which is done in O(m.n) with a footprint in O(n)

© 2019 Nokia - Confidential18

Count #operations to transform w into w' (insertion, deletion, copy)
Levenshtein distance (Владимир Иосифович Левенште́йн, 1956)

• Consider two words a and b. The Levenstein distance lev is defined by:

• … where tail be the primitive returning the suffix starting from index 1 of a string w

• Example: tail("abcde") = "bcde"

• It computes the shortest path length from (0, 0) to (m, n) in the edit graph by
minimizing #insertion+#deletion+#substitution, while LCS maximizes #matches.

• lev can be computed using Wagner Fisher algorithm (which is slight modification of Needleman
Wunsh algorithm)

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Wagner%E2%80%93Fischer_algorithm
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

© 2019 Nokia - Confidential19

Same as Levenshtein distance, with some transposition operations
Damerau-Levenshtein distance, 1964

• Consider two words a and b. The Damerau-Levenshtein distance of two

words a and b is recursively defined by:

• Compared to Levenstein distance, swapped characters are rewarded

by slightly modifying the neighborhood definition.

• Intuitively, if a[i]a[i-1] = b[j-1]b[j], there is a corresponding arc that only costs 1

instead, and which is cheaper than the indel paths of cost 2.

https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance

© 2019 Nokia – Secret and Confidential20

Wrap-up

<Document ID: change ID in footer or remove>

© 2019 Nokia - Confidential21

Distances are not necessarily metrics!
Complexity, footprint and properties

Distance Metric Compl. Footp.

Levenshtein 🗸 O(m.n) O(m.n)

Damerau-

Levenshtein

!Δ O(m.n) O(min(m,n))

LCS 🗸 O(m.n) O(n)

Hamming 🗸 O(n) O(1)

Jaro-Winkler !Δ, !id

• d is a metric iff the following properties hold:

• Symmetry:d(a,b) = d(b,a)

• Identity: d(a, b) = 0 ⇔ a = b

• Triangle inequality:d(a,c) ≤ d(a,b) + d(b, c)

• Check requirements to compute correct
results!

• Some algorithms require metric (e.g. Dijkstra).

• Some algorithms only require quasi-metric (e.g.
some clustering algorithms).

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Jaro_distance

© 2019 Nokia - Confidential22

Edit distances and string alignments
Conclusion

• Edit distances are widely used to check if two input strings are "similar"

• The edit distance results from string alignments, that are ruled by a set of edit operations (insertion,
deletion, substitution and transposition) and a cost function.

• Edit distances are not always metrics.

• Edit distances are typically computed using dynamic programming.

• Dynamic programming is a technique applies on any problem having an optimal substructure and
overlapping subproblems. As these dependencies form a DAG (not a tree) this is DP (not D&C).

• When computing edit distances, the DP model is closely related to the edit graph.

• DP model ~ edit graph (topology + weights)

• DP solution ~ best path ~ best alignment.

• Edit distance ~ best path length ~ best alignment score

