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A M/G/1 Queue

Let D be a bounded subset of Z2, with m = |D|, and number the points of D from
0 to m −1.

Each point of D hosts a queue. Let Xi (t ) be the population of the i th queue at
time t . Let (ai )0≤i≤m−1 a non-trivial sequence of Nm .

- Arrival process: let us suppose that arrival happen according to a Poisson
point process with parameter λ> 0.

- Departure process: each user have a file to transmit to the network,
distributed exponentially with mean L > 0. Using a linearised
Shannon-Hartley’s formula, we get the instantaneous departure rate of queue
j at time t as:

R j (t ) = 1

L

a j X j (t )

N0 +∑m−1
i=0 ai Xi (t )

Goal : study the stability of underlying Markov chain (depending on λ)
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Definitions and Markov chains

Let X be a Markov chain with state space S . We define:

- The hitting time of state i ∈S is Ti = inf{n ≥ 1, Xn = i }.

- The probability of return to state i in n steps is f n
i i =P[Ti = n|X0 = i ].

- State i is transient iff P[Ti <∞|X0 = i ] =∑∞
n=1 f n

i i < 1.

- State i is positive recurrent iff E[Ti ] =∑∞
n=1 n f n

i i <∞.

X is said to be transient if all its states are transient, recurrent if none of it states
are transients.

X is ergodic if it is aperiodic, and positive recurrent.
X is stable if it is ergodic with a unique stationary distribution.
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Towards a stability criterion

Study the stability: drift arguments. Study the expected value of a jump in the
state space.

Theorem (Foster, 1953)
Let X be a φ-irreducible discrete-time Markov chain. X is positive recurrent if and
only if there exists a finite set C , a Lyapunov function V and constants α,β> 0
such that:

∆V (ζ) ≡ E [V (X1)−V (X0)|X0 = ζ] ≤β1{ζ ∈C }−α1{ζ 6∈C }

Limitation : restricted to bounded jumps on the state space, which can be
impractical to use (non-linear Lyapunov function, queueing disciplines).

→ Is there a way to get a simple method to obtain the stability of a Markov chain
?
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Fluid-scaling

Introduced by Rybko and Stolyar (1992). Instead of studying X , study the
fluid-scaled process x defined as:

xn(t ) = 1

n
X n(nt ), X n(0) = n

Main result of the paper: let X be a monoclass queuing network with FIFO
discipline. Then:

Theorem (Rybko, Stolyar, 1992)
If there exists T > 0 such that ∀t ≥ T, limn→∞E [‖xn(t )‖] = 0 then X is ergodic.

limn→∞ xn(t ) = x̄(t ) is called a fluid limit for the Markov chain X .

Fluid limits prove to be useful to assert stability or instability for queuing networks.
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Positive Harris recurrence
We need the following definition

Definition (Harris recurrence)
τA = inf{t ≥ 0, X (t ) ∈ A} is the hitting time of A. X is Harris recurrent iff there
exists µ, σ-finite such that µ(A) > 0 and A ⊂S imply P (τA <∞|X0 = x) = 1,
∀x ∈S . X is positive Harris recurrent (PHR) iff it is Harris recurrent and its
stationary distribution can be normalised to a probability distribution

Theorem (Meyn, Tweedie, 1993)
If there exists δ> 0 such that

lim
x→∞

1

|x|E [X (|x|δ)|X0 = x] = 0,

then supx∈B {Ex [τB (δ)]} <∞, with τb(δ) = inf{t ≥ δ, X (t ) ∈ B}, and B = B1(0,κ) for
some κ> 0. Consequently, X is PHR.

→ Condition on the fluid-scaled model for positive Harris recurrence of the chain.
Need to find a way to prove this condition systematically.

Introduce fluid models and fluid limits
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Fluid model and fluid limits

Let X̂ be a fluid limit for our Markov chain. We introduce:

Definition (Stability)
A fluid limit is said to be stable if there exists δ> 0 such that for any fluid limit
with |X̂ (0)| = 1, we have X̂ (·+δ) = 0.

Using this definition, we can link PHR and stability of the system:

Theorem (Dai, 1995, [1])
If the fluid limit model for a fixed queuing discipline is stable, then the Markov
chain X describing the dynamics of the network is PHR.

This gives a systematic method to check stability for a queuing network.
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Systematic way to verify stability

- Choose a representation for the queuing network (queue length X(t ) = (Xi (t )))

- Obtain the temporal equation for the system (from system modelisation)

- Obtain the limit equation (functional laws of large numbers, deviation
properties, tightness)

- Prove convergence of the fluid-scaling to the limit

- Prove that the fluid limit reaches 0 (Lyapunov stability)
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A M/G/1 interference network

Reminder:

- Arrival process: Poisson point process of intensity λ> 0.

- Departure process: stochastic process with intensity R j (t ) = 1
L

a j X j (t )

N0+∑m−1
i=0 ai Xi (t )

.

Get the temporal evolution of the queue lengths. Let (Ai )1≤i≤m be a Poisson point
process of intensity λ and (N s

i )1≤i≤m be Poisson point processes of intensity 1.
We get:

Xi (t ) = Xi (0)︸ ︷︷ ︸
Initial condition

+ Ai (t )︸ ︷︷ ︸
Arrival process

−N s
i

(∫ t

0

1

L

a j X j (s)

N0 +∑m−1
i=0 ai Xi (s)

d s

)
︸ ︷︷ ︸

Departure process

.

Next step : establish the fluid equations
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A M/G/1 interference network

For the arrival process: use Poisson point processes properties to get:

1

n
Ai (nt ) →λt

For the departure process: use tightness properties to get:

1

n
N s

i

(∫ t

0

1

L

a j X j (s)

N0 +∑m−1
i=0 ai Xi (s)

d s

)
→ 1

L

∫ s

0

a j x̄ j (s)∑m−1
i=0 ai x̄i (s)

d s.

To prove convergence: use Skorokhod representation theorem and use C-tightness
(tight with almost surely continuous limits), cf [2]
Fluid equation:

x̄i (t ) = x̄i (0)+λt − 1

L

∫ s

0

a j x̄ j (s)∑m−1
i=0 ai x̄i (s)d s

.

Reduce the problem to a deterministic system of integral equations
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A M/G/1 interference network

Differential system: 
d
dt

x̄i (t ) =λ− 1

L

a j x̄ j (s)∑m−1
i=0 ai x̄i (s)d s

.

x̄i (0) = x0
i

Let V (x) =∑m
i=0 x j . We immediately get:

d
dt

V (x̄) =λm − 1

L
.

Lyapunov stability: d
dt V (x̄) < 0 which gives us a condition on the arrival rate:

λ< 1

Lm
.

If λ< 1
Lm , then x̄i (t ) → 0 as t goes to infinity, which implies that the queuing

system is stable, i.e. that X is PHR.
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Reciprocal
The stability of the fluid limit model implies the stability of the system. Does the
instability of the fluid model leads to instability of the system ?

Answer: no. Bramson ([3]) built a network with two classes, an unstable fluid
limit such that the queuing network is stable.
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Reciprocal

We need an alternate definition for instability:

Theorem (Dai, 1996, [4])
A fluid limit model is weakly unstable if there exists δ> 0 such that for each fluid
solution Q̂(·) starting from 0, Q̂(δ) 6= 0. If the fluid limit is weakly unstable, then
we have with probability 1:

lim
t→∞|Q(t )| = +∞

Comes from the definition of weak stability: a model is weakly stable iff all fluid
limits starting at 0 are trivial.
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Outline of the proof

Assume that model is weakly unstable for a given sample path ω.

There exists δ(ω) > 0 such that ∀Q̂ fluid limit, Q̂(δ) > 0.
Suppose that liminfr→∞

∣∣∣Q(rδ)
r

∣∣∣= 0.

There exists a subsequence {rn} along which
∣∣∣Q(rnδ)

rn

∣∣∣→ 0.

Moreover, { Q(r ·,ω)
r ,r ≥ 1} is precompact. There exists {rnm } such that Q(rnm ·)

rnm

converges u.o.c. to Q̂ fluid limit.

Thus
∣∣∣Q(rnm δ)

rnm

∣∣∣→ ∣∣Q̂(δ)
∣∣= 0 : contradiction

Hence, liminfr→∞
∣∣∣Q(rδ)

r

∣∣∣> 0 implying that limt→∞|Q(t )| = +∞
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A M/G/1 interference network

Fluid equations: 
d
dt

x̄i (t ) =λ− 1

L

a j x̄ j (s)∑m−1
i=0 ai x̄i (s)d s

.

xi (0) = x0
i

Assume that λ> 1
Lm . We get:

d
dt

m−1∑
i=0

x̄i (t ) =λm − 1

L
> 0.

Thus, ∃i such that d
dt x̄i (t ) > 0, i.e., ∃δ> 0 such that x̄i (δ) > 0 =⇒ the model is

weakly unstable.
We have proven:

λ< 1
Lm ⇐⇒X is stable.
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Conclusion

Fluid limits are a way to systematically check a condition for PHR of a
Markov chain

Study the asymptotic regime of a queuing system over unbounded jumps

Well-suited for open queuing networks

Existence of a "reciprocal" to prove instability of the system

Thank you for your attention !
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