
Python Workshop: Introduction to PyTorch

Léo Laugier

*This presentation is greatly inspired by the 2017 PyTorch Workshop
(https://github.com/mlberkeley/PyTorch-Workshop) and the 2018 Introduction to
Deep Learning (https://github.com/mlberkeley/intro-dl-workshop) from Machine

Learning at Berkeley.

March 11, 2020

Laugier, L. (IP Paris) Presentation March 11, 2020 1 / 35

https://github.com/mlberkeley/PyTorch-Workshop
https://github.com/mlberkeley/intro-dl-workshop

Contents

1 Who this workshop is for

2 Theoretical background on artificial neural networks and deep learning

3 PyTorch: a Python package for training (deep) artificial neural networks

4 Automatic differentiation with the torch.autograd package

5 Training a CNN on MNIST Digit Classification with PyTorch

6 Conclusion: PyTorch is convenient for deep learning research

Laugier, L. (IP Paris) Presentation March 11, 2020 2 / 35

Contents

1 Who this workshop is for

2 Theoretical background on artificial neural networks and deep learning

3 PyTorch: a Python package for training (deep) artificial neural networks

4 Automatic differentiation with the torch.autograd package

5 Training a CNN on MNIST Digit Classification with PyTorch

6 Conclusion: PyTorch is convenient for deep learning research

Laugier, L. (IP Paris) Presentation March 11, 2020 3 / 35

Who this workshop is for

People who know the general ideas of machine / deep learning and
machine / deep learning frameworks.

People who want a ground up introduction to PyTorch

This workshop is not

A theoretical lecture about deep learning

An advanced tutorial on PyTorch for PyTorch “connoisseurs”

Laugier, L. (IP Paris) Presentation March 11, 2020 4 / 35

Contents

1 Who this workshop is for

2 Theoretical background on artificial neural networks and deep learning

3 PyTorch: a Python package for training (deep) artificial neural networks

4 Automatic differentiation with the torch.autograd package

5 Training a CNN on MNIST Digit Classification with PyTorch

6 Conclusion: PyTorch is convenient for deep learning research

Laugier, L. (IP Paris) Presentation March 11, 2020 5 / 35

What’s the Difference Between Artificial Intelligence,
Machine Learning and Deep Learning?

Figure: The Difference Between AI, Machine Learning, and Deep Learning. Figure
from https://blogs.nvidia.com/

Laugier, L. (IP Paris) Presentation March 11, 2020 6 / 35

https://blogs.nvidia.com/

Definition of Deep Learning and Artificial Neural Networks

Definition of Deep Learning (mix between LeCun et al. [1], 2015 and
Goodfellow et al. [2], 2016)

Deep learning is an approach to solve AI problems by allowing
computational models that are composed of multiple processing layers to
learn - from experience - representations of data with multiple levels of
abstraction and understand the world in terms of a hierarchy of concepts,
with each concept defined through its relation to simpler concepts. The
hierarchy of concepts enables the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these
concepts are built on top of each other, the graph is deep.

Definition of Artificial Neural Networks (ANNs)

These models, often “vaguely” (Wikipedia) inspired by the structure and
function of biological neural networks that constitute animal brains, are
called artificial neural networks.

Laugier, L. (IP Paris) Presentation March 11, 2020 7 / 35

Biological neural networks: the Hubel and Wiesel Cat
Experiment (1959)

Laugier, L. (IP Paris) Presentation March 11, 2020 8 / 35

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Universal approximation theorem: ANNs can approximate
continuous functions

Figure: General architecture of Artificial Neurons (a) and ANNs (b). Figures from
Vieira et al. [3], 2017

Laugier, L. (IP Paris) Presentation March 11, 2020 9 / 35

ANNs are trained by optimizing an objective function on a
training dataset

Training a neural network

Let fw be the ANN model with parameters (weights) w.
Let J be the objective (loss, cost) function (e.g. Mean Squared Error for
regression, Cross Entropy for classification, ...).
Let Dtrain = (x i , y i)i∈[1,n] be the training dataset.
Optimization problem: ŵ = arg minw E(x ,y)∼Dtrain

[J(fw (x), y)]

Then, classic parametric Machine Learning approach:

Evaluate on validation set (hyperparameter tuning)

Test on test set...

Laugier, L. (IP Paris) Presentation March 11, 2020 10 / 35

The objective function is optimized with Stochastic
Gradient Descent

Optimization problem

Minimizing the loss function: ŵ = arg minw E(x ,y)∼Dtrain
[J(fw (x), y)]

Optimization algorithm

Gradient descent: w ← w − ε ∂J∂w

Approximation of the Optimization algorithm

Stochastic Gradient Descent (SGD): replaces the actual gradient
(calculated from the entire data set) by an estimate thereof (calculated
from a randomly selected subset of the data).

Laugier, L. (IP Paris) Presentation March 11, 2020 11 / 35

Gradient descent finds a local minimum of a differentiable
function

Laugier, L. (IP Paris) Presentation March 11, 2020 12 / 35

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

SGD is computed with backpropagation

Figure: Illustration of the chain rule

Figure: from https://neuralnetworksanddeeplearning.com

Laugier, L. (IP Paris) Presentation March 11, 2020 13 / 35

https://neuralnetworksanddeeplearning.com

Contents

1 Who this workshop is for

2 Theoretical background on artificial neural networks and deep learning

3 PyTorch: a Python package for training (deep) artificial neural networks

4 Automatic differentiation with the torch.autograd package

5 Training a CNN on MNIST Digit Classification with PyTorch

6 Conclusion: PyTorch is convenient for deep learning research

Laugier, L. (IP Paris) Presentation March 11, 2020 14 / 35

We want a framework suitable for deep learning research

We want:

to be able to define a general computation structure,

a framework able to differentiate automatically and back-propagate
gradients efficiently by leveraging deep learning dedicated hardware
(GPUs, TPUs, model / data parallelism) without worrying about low
level computations,

to quickly build neural network models, initialize weights and play
with pre-made (CNNs, RNNs, Attentions, ...) and custom
architectures (MyToyNN),

flexibility for research purpose, easy testing and debugging,

very little boilerplate for common tasks (mathematical operations,
classic architectures, loss functions, optimizers, data pre-processing,
dataset loading, ...).

Laugier, L. (IP Paris) Presentation March 11, 2020 15 / 35

We want a computational graph handling feedforward
computations and gradient backpropagation for us

Definition of a computational graph

A computational graph is a directed graph where the nodes correspond
to operations or variables. Variables can feed their value into operations,
and operations can feed their output into other operations. This way,
every node in the graph defines a function of the variables.

Figure: Backpropagating and finding the gradient of f w.r.t all the variables in the
graph by the application of chain rule. Blue elements represent the outputs of the
nodes whereas red element represents the gradients that were calculated during
backpropagation. Figure from https://medium.com/spidernitt/

Laugier, L. (IP Paris) Presentation March 11, 2020 16 / 35

https://medium.com/spidernitt/

TensorFlow and PyTorch: 2 packages with distinct
approaches

2 main Python packages for deep learning: TensorFlow (Google, 2015)
and PyTorch (Facebook, 2016).

TensorFlow 1.0 (2017): the computational graph is built “before
compilation” and run later in a Session (for speed purpose). Note
that TensorFlow 2.0 (2019) claims to be more “Pythonesque”.

PyTorch 1.0 (2018): the computational graph is built on the fly.
The advantage to define by run is more flexibility for dynamic inputs.

Summary:

TensorFlow: Define-then-run

PyTorch: Define-by-run, installation pytorch.org/

Laugier, L. (IP Paris) Presentation March 11, 2020 17 / 35

pytorch.org/

Contents

1 Who this workshop is for

2 Theoretical background on artificial neural networks and deep learning

3 PyTorch: a Python package for training (deep) artificial neural networks

4 Automatic differentiation with the torch.autograd package

5 Training a CNN on MNIST Digit Classification with PyTorch

6 Conclusion: PyTorch is convenient for deep learning research

Laugier, L. (IP Paris) Presentation March 11, 2020 18 / 35

Automatic differentiation: the torch.autograd package

The torch.autograd package (https://pytorch.org/tutorials/
beginner/blitz/autograd_tutorial.html)

The autograd package provides automatic differentiation for all
operations on Tensors. It is a define-by-run framework, which means
that your backprop is defined by how your code is run, and that every
single iteration can be different.

Laugier, L. (IP Paris) Presentation March 11, 2020 19 / 35

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

The torch.Tensor class is a multi-dimensional matrix
containing elements of a single data type

PyTorch Tensors are similar to NumPy Arrays.

Figure: from fr.wikipedia

2 kinds of tensors: constants (e.g. inputs, targets. No gradient tracking)
and variables (e.g. ANN’s weights to be optimized. Gradient tracking)

PyTorch < 0.4.0: constants = torch.Tensor, variables = torch.Variable
PyTorch ≥ 0.4.0:
constants = torch.tensor(*args, **kwargs, requires grad = False),
variables = torch.tensor(*args, **kwargs, requires grad = True)

Laugier, L. (IP Paris) Presentation March 11, 2020 20 / 35

fr.wikipedia

Graphics Processing Units (GPUs) speed up feedforward
computations and gradient backpropagation

Historically: specialized electronic circuit designed to rapidly manipulate
and alter memory to accelerate the creation of images (see Real-Time
Deformation and Fracture in a Game Environment).

Graphics Processing Units (GPU) have highly parallel structure that
make them more efficient than general-purpose central processing units
(CPUs) for algorithms that process large blocks of data in parallel: very
suitable for operations on tensors!

API: CUDA (NVIDIA) that PyTorch uses to load data and models on
GPUs: (https://pytorch.org/docs/stable/notes/cuda.html)

Other specialized hardware for Deep Learning: Tensor Processing Units
(TPUs, Google).

Laugier, L. (IP Paris) Presentation March 11, 2020 21 / 35

https://www.youtube.com/watch?v=fdIyAobZWG4
https://www.youtube.com/watch?v=fdIyAobZWG4
https://pytorch.org/docs/stable/notes/cuda.html

Graphics Processing Units (GPU) speed up feedforward
computations and gradients backpropagation

Laugier, L. (IP Paris) Presentation March 11, 2020 22 / 35

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Contents

1 Who this workshop is for

2 Theoretical background on artificial neural networks and deep learning

3 PyTorch: a Python package for training (deep) artificial neural networks

4 Automatic differentiation with the torch.autograd package

5 Training a CNN on MNIST Digit Classification with PyTorch

6 Conclusion: PyTorch is convenient for deep learning research

Laugier, L. (IP Paris) Presentation March 11, 2020 23 / 35

MNIST Digit Classification task

Laugier, L. (IP Paris) Presentation March 11, 2020 24 / 35

Convolutional Neural Networks are specific neural networks
achieving SOTA results in image classification

Laugier, L. (IP Paris) Presentation March 11, 2020 25 / 35

Convolutions have translation invariance characteristics

Laugier, L. (IP Paris) Presentation March 11, 2020 26 / 35

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

Convolution can be applied for edge detection

Laugier, L. (IP Paris) Presentation March 11, 2020 27 / 35

Convolutional layers

Laugier, L. (IP Paris) Presentation March 11, 2020 28 / 35

Pooling layers replace the output of the net at a certain
location with a summary statistic of the nearby outputs

Pooling helps to make the representation approximately invariant to small
translations of the input.

Laugier, L. (IP Paris) Presentation March 11, 2020 29 / 35

Training a CNN on MNIST Digit Classification with
PyTorch (7/7): Demonstration

Demo (Google Colab Notebook) at bit.ly/3cVPyEy

Laugier, L. (IP Paris) Presentation March 11, 2020 30 / 35

bit.ly/3cVPyEy

Contents

1 Who this workshop is for

2 Theoretical background on artificial neural networks and deep learning

3 PyTorch: a Python package for training (deep) artificial neural networks

4 Automatic differentiation with the torch.autograd package

5 Training a CNN on MNIST Digit Classification with PyTorch

6 Conclusion: PyTorch is convenient for deep learning research

Laugier, L. (IP Paris) Presentation March 11, 2020 31 / 35

Conclusion: PyTorch is convenient for deep learning
research

Because of its flexibility, PyTorch is very used in research

PyTorch is Pythonesque and “NumPy-esque”

TensorFlow is more optimized for production and faster at run time
because the computational graph is built before running: you pay(ed
-in TF 1.0 at least-) the price during development

PyTorch being younger than TensorFlow, comparatively little support,
fewer StackOverflow questions, etc. You may be one of the first to
get any particular error

Easier to feed layers with variable-length input tensors without
necessarily padding...

Other historic Python packages for deep learning: Caffe (merged in
PyTorch), Theano (2007).

Laugier, L. (IP Paris) Presentation March 11, 2020 32 / 35

Further readings and courses

Deep Learing and ANNs

The Deep Learning Book (Goodfellow et al. [2], 2016))

https://neuralnetworksanddeeplearning.com (Michael Nielsen)

Stanford CS230 Deep Learning (Andrew Ng)

UC Berkeley CS294-129 Designing, Visualizing and Understanding
Deep Neural Networks (John Canny) and CS294-131 Special Topics
in Deep Learning (Trevor Darrell)

Coursera Deep Learning Specialization (deeplearning.ai)

Université Paris-Saclay MVA Master courses on Deep Learning
(Vincent Lepetit, Stéphane Mallat, Guillaume Charpiat, Sébastien
Gerchinovitz)

Parallel computing, CUDA, GPUs

UC Berkeley CS267 Applications of Parallel Computers (Jim Demmel)

Laugier, L. (IP Paris) Presentation March 11, 2020 33 / 35

https://neuralnetworksanddeeplearning.com

References I

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning.
Nature, 521(7553):436–444, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning.
MIT Press, 2016.
http://www.deeplearningbook.org.

Sandra Vieira, Walter Pinaya, and Andrea Mechelli.
Using deep learning to investigate the neuroimaging correlates of
psychiatric and neurological disorders: Methods and applications.
Neuroscience Biobehavioral Reviews, 74, 01 2017.

Laugier, L. (IP Paris) Presentation March 11, 2020 34 / 35

http://www.deeplearningbook.org

Python Workshop: Introduction to PyTorch

Léo Laugier

*This presentation is greatly inspired by the 2017 PyTorch Workshop
(https://github.com/mlberkeley/PyTorch-Workshop) and the 2018 Introduction to
Deep Learning (https://github.com/mlberkeley/intro-dl-workshop) from Machine

Learning at Berkeley.

March 11, 2020

Laugier, L. (IP Paris) Presentation March 11, 2020 35 / 35

https://github.com/mlberkeley/PyTorch-Workshop
https://github.com/mlberkeley/intro-dl-workshop

	Who this workshop is for
	Theoretical background on artificial neural networks and deep learning
	PyTorch: a Python package for training (deep) artificial neural networks
	Automatic differentiation with the torch.autograd package
	Training a CNN on MNIST Digit Classification with PyTorch
	Conclusion: PyTorch is convenient for deep learning research

	fd@rm@3:
	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

