Asymptotics for Euclidean minimal spanning trees on random points by David Aldous and J. Michael Steele

Bharath Roy Choudhury

ENS-PSL
INRIA
19 February 2020

Euclidean minimal spanning tree (MST)

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be points in $\mathbb{R}^{d}(d \geq 2)$. The minimal spanning tree (MST) t with vertex set X is a tree whose sum of the edge-lengths are minimum.

$$
\sum_{e \in t}|e|=\min _{G} \sum_{e \in G}|e|
$$

Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random points obtained by a Poisson point process.

Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random points obtained by a Poisson point process.

What are these functionals?

- Degree of a vertex.

Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random points obtained by a Poisson point process.

What are these functionals?

- Degree of a vertex.
- Sum of the d-th powers of edge-lengths incident at a vertex. (d is the dimension)

Poisson point process

Definition
A point process \mathcal{N} is a Poisson point process on \mathbb{R}^{d} with intensity measure Λ if it satisfies the following:

Poisson point process

Definition

A point process \mathcal{N} is a Poisson point process on \mathbb{R}^{d} with intensity measure Λ if it satisfies the following:

- For any relatively compact set B (i.e. closure (B) is compact), the number of points of \mathcal{N} in $B,|\mathcal{N} \cap B|$ is a Poisson random variable with parameter $\Lambda(B)$.

$$
\mathbb{P}[|\mathcal{N} \cap B|=k]=e^{-\Lambda(B)} \frac{\Lambda(B)^{k}}{k!}
$$

Poisson point process

Definition

A point process \mathcal{N} is a Poisson point process on \mathbb{R}^{d} with intensity measure Λ if it satisfies the following:

- For any relatively compact set B (i.e. closure (B) is compact), the number of points of \mathcal{N} in $B,|\mathcal{N} \cap B|$ is a Poisson random variable with parameter $\Lambda(B)$.

$$
\mathbb{P}[|\mathcal{N} \cap B|=k]=e^{-\Lambda(B)} \frac{\Lambda(B)^{k}}{k!}
$$

- For any finite number of pairwise disjoint relatively compact sets $B_{1}, B_{2}, \ldots, B_{n}$, the random variables $\left|\mathcal{N} \cap B_{1}\right|, \ldots,\left|\mathcal{N} \cap B_{n}\right|$ are independent.

Stationary Poisson point process

If the Poisson point process \mathcal{N} is stationary then

Stationary Poisson point process

If the Poisson point process \mathcal{N} is stationary then

- The intensity measure $\Lambda(B)=\rho \lambda(B)$ (ρ is a constant, λ Lebesgue measure on \mathbb{R}^{d}).

Stationary Poisson point process

If the Poisson point process \mathcal{N} is stationary then

- The intensity measure $\Lambda(B)=\rho \lambda(B)(\rho$ is a constant, λ Lebesgue measure on \mathbb{R}^{d}).
- Palm probability: Informally, it is the distribution of \mathcal{N} conditioned that a typical point of this process is located at 0 .

Stationary Poisson point process

If the Poisson point process \mathcal{N} is stationary then

- The intensity measure $\Lambda(B)=\rho \lambda(B)$ (ρ is a constant, λ Lebesgue measure on \mathbb{R}^{d}).
- Palm probability: Informally, it is the distribution of \mathcal{N} conditioned that a typical point of this process is located at 0 .
- Its Palm probability is equal to $\mathcal{N} \cup \delta_{0}:=\mathcal{N}^{\circ}$.

Nice sets

Definition
A set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of finite or countably finite points of \mathbb{R}^{d} $(d \geq 2)$ is called nice if

Nice sets

Definition
A set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of finite or countably finite points of \mathbb{R}^{d} $(d \geq 2)$ is called nice if

- X is locally finite, i.e. every bounded subset of \mathbb{R}^{d} has finite number of points of X.

Nice sets

Definition

A set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of finite or countably finite points of \mathbb{R}^{d} $(d \geq 2)$ is called nice if

- X is locally finite, i.e. every bounded subset of \mathbb{R}^{d} has finite number of points of X.
- All the interpoint distances are distinct, i.e. for any two distinct pair of points $\left\{x_{1}, x_{2}\right\}=\left\{x_{3}, x_{4}\right\},\left|x_{1}-x_{2}\right| \neq\left|x_{3}-x_{4}\right|$.

Nice sets

Definition

A set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of finite or countably finite points of \mathbb{R}^{d}
$(d \geq 2)$ is called nice if

- X is locally finite, i.e. every bounded subset of \mathbb{R}^{d} has finite number of points of X.
- All the interpoint distances are distinct, i.e. for any two distinct pair of points $\left\{x_{1}, x_{2}\right\}=\left\{x_{3}, x_{4}\right\},\left|x_{1}-x_{2}\right| \neq\left|x_{3}-x_{4}\right|$.

Examples

- The Poisson point process \mathcal{N} is a.s. nice.

Nice sets

Definition

A set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of finite or countably finite points of \mathbb{R}^{d}
$(d \geq 2)$ is called nice if

- X is locally finite, i.e. every bounded subset of \mathbb{R}^{d} has finite number of points of X.
- All the interpoint distances are distinct, i.e. for any two distinct pair of points $\left\{x_{1}, x_{2}\right\}=\left\{x_{3}, x_{4}\right\},\left|x_{1}-x_{2}\right| \neq\left|x_{3}-x_{4}\right|$.

Examples

- The Poisson point process \mathcal{N} is a.s. nice.
- Let $s_{n}=\sum_{i=1}^{n} 1 / i$ and γ be an irrational number. $X_{n}=\left\{-\gamma s_{n}, \ldots,-\gamma s_{1}, s_{1}, \ldots, s_{n}\right\}$

Construction of MST

Tree starting from a point
Let X be a nice set and $x \in X$. The tree starting from $x, t_{\infty}(x)$, is constructed inductively in the following way:

Construction of MST

Tree starting from a point
Let X be a nice set and $x \in X$. The tree starting from $x, t_{\infty}(x)$, is constructed inductively in the following way:

- Let $t_{1}(x)$ be the tree with vertex set $\{x\}$.

Construction of MST

Tree starting from a point
Let X be a nice set and $x \in X$. The tree starting from $x, t_{\infty}(x)$, is constructed inductively in the following way:

- Let $t_{1}(x)$ be the tree with vertex set $\{x\}$.
- Let $t_{n}(x)$ be the tree at obtained at nth step with vertex set $V_{n}=\left\{\eta_{1}, \eta_{2}, \ldots \eta_{n}\right\}$ (where $\eta_{1}=x$). Let η_{n+1} be the point of $X \backslash V_{n}$ which is closest to the set V_{n} and $z \in V_{n}$ be such a closest point. Then, $t_{n+1}(x)$ is obtained by adding a new edge $\left(\eta_{n+1}, z\right)$ to t_{n}.

Construction of MST

Tree starting from a point

Let X be a nice set and $x \in X$. The tree starting from $x, t_{\infty}(x)$, is constructed inductively in the following way:

- Let $t_{1}(x)$ be the tree with vertex set $\{x\}$.
- Let $t_{n}(x)$ be the tree at obtained at nth step with vertex set $V_{n}=\left\{\eta_{1}, \eta_{2}, \ldots \eta_{n}\right\}$ (where $\eta_{1}=x$). Let η_{n+1} be the point of $X \backslash V_{n}$ which is closest to the set V_{n} and $z \in V_{n}$ be such a closest point. Then, $t_{n+1}(x)$ is obtained by adding a new edge $\left(\eta_{n+1}, z\right)$ to t_{n}.
- $t_{\infty}(x)=\cup_{i=1}^{\infty} t_{n}(x)$.

Example

Figure：Construction of $t_{n}(x)$

Example

Figure: Construction of $t_{n}(x)$

Example

Figure: Construction of $t_{n}(x)$

Example

Figure: Construction of $t_{n}(x)$

Construction of MST

The graph $g(X)$
The graph $g(X)$ on a nice set X is defined in the following way:

Construction of MST

The graph $g(X)$
The graph $g(X)$ on a nice set X is defined in the following way:

- Vertex set of $g(X)$ is X.

Construction of MST

The graph $g(X)$
The graph $g(X)$ on a nice set X is defined in the following way:

- Vertex set of $g(X)$ is X.
- For $y_{1}, y_{2} \in X$, an edge $\left(y_{1}, y_{2}\right) \in g(X)$ if $\left(y_{1}, y_{2}\right) \in t_{\infty}\left(y_{1}\right) \cup t_{\infty}\left(y_{2}\right)$.

Construction of MST

The graph $g(X)$
The graph $g(X)$ on a nice set X is defined in the following way:

- Vertex set of $g(X)$ is X.
- For $y_{1}, y_{2} \in X$, an edge $\left(y_{1}, y_{2}\right) \in g(X)$ if $\left(y_{1}, y_{2}\right) \in t_{\infty}\left(y_{1}\right) \cup t_{\infty}\left(y_{2}\right)$.

Examples

- If $|X|=n$ then $g(X)=t_{\infty}(x)=t_{n}(x)$ for any $x \in X$.

Construction of MST

The graph $g(X)$
The graph $g(X)$ on a nice set X is defined in the following way:

- Vertex set of $g(X)$ is X.
- For $y_{1}, y_{2} \in X$, an edge $\left(y_{1}, y_{2}\right) \in g(X)$ if $\left(y_{1}, y_{2}\right) \in t_{\infty}\left(y_{1}\right) \cup t_{\infty}\left(y_{2}\right)$.

Examples

- If $|X|=n$ then $g(X)=t_{\infty}(x)=t_{n}(x)$ for any $x \in X$.
- For $X_{n}=\left\{-\gamma s_{n}, \ldots,-\gamma s_{1}, s_{1}, \ldots, s_{n}\right\}, g\left(X_{n}\right)=$

Construction of MST

The graph $g(X)$
The graph $g(X)$ on a nice set X is defined in the following way:

- Vertex set of $g(X)$ is X.
- For $y_{1}, y_{2} \in X$, an edge $\left(y_{1}, y_{2}\right) \in g(X)$ if $\left(y_{1}, y_{2}\right) \in t_{\infty}\left(y_{1}\right) \cup t_{\infty}\left(y_{2}\right)$.

Examples

- If $|X|=n$ then $g(X)=t_{\infty}(x)=t_{n}(x)$ for any $x \in X$.
- For $X_{n}=\left\{-\gamma s_{n}, \ldots,-\gamma s_{1}, s_{1}, \ldots, s_{n}\right\}, g\left(X_{n}\right)=$

- For $X=\cup_{i \geq 1} X_{n}, g(X)=$

Properties of $g(X)$

Lemma
Let X be an infinite nice set. Then, $g(X)$ is a forest and the components are infinite.

Proof.

Properties of $g(X)$

Lemma

Let X be an infinite nice set. Then, $g(X)$ is a forest and the components are infinite.
Proof.

1. Observation: If an edge $\left(y_{1}, y_{2}\right) \in t_{\infty}(x)$ then either $\left(y_{1}, y_{2}\right)$ is an edge of $t_{\infty}\left(y_{1}\right)$ or it is an edge of $t_{\infty}\left(y_{2}\right)$.

Properties of $g(X)$

Lemma

Let X be an infinite nice set. Then, $g(X)$ is a forest and the components are infinite.

Proof.

1. Observation: If an edge $\left(y_{1}, y_{2}\right) \in t_{\infty}(x)$ then either $\left(y_{1}, y_{2}\right)$ is an edge of $t_{\infty}\left(y_{1}\right)$ or it is an edge of $t_{\infty}\left(y_{2}\right)$.
2. Let $x \in X$. Then by above observation $t_{\infty}(x) \subset g(X)$ proving that components are infinite.

Properties of $g(X)$

Lemma

Let X be an infinite nice set. Then, $g(X)$ is a forest and the components are infinite.

Proof.

1. Observation: If an edge $\left(y_{1}, y_{2}\right) \in t_{\infty}(x)$ then either $\left(y_{1}, y_{2}\right)$ is an edge of $t_{\infty}\left(y_{1}\right)$ or it is an edge of $t_{\infty}\left(y_{2}\right)$.
2. Let $x \in X$. Then by above observation $t_{\infty}(x) \subset g(X)$ proving that components are infinite.
3. Suppose there is a cycle $y_{1}, y_{2}, \ldots y_{k}, y_{1}$. Reorder them such that $\left|y_{k}-y_{1}\right|$ is the maximum among all distances. Then $\left(y_{1}, y_{k}\right)$ is neither an edge $\in t_{\infty}\left(y_{1}\right)$ nor $\in t_{\infty}\left(y_{k}\right)$.

MSF of stationary Poisson point process, $g(\mathcal{N})$

Lemma
Let $\mathcal{N}^{0}=\mathcal{N} \cup \delta_{0}, \mathcal{T}$ be the connected component of 0 in $g\left(\mathcal{N}^{0}\right)$, D be the degree of 0 in \mathcal{T} and $L_{1}, L_{2}, \ldots, L_{D}$ be the edge-lengths incident at 0.Then,

1. $D \leq b_{d}$ where b_{d} is a constant.
2. $\mathbb{E}[D]=2$.
3. $I_{d}=\sum_{i} \mathbb{E}\left[L_{i}^{d}\right]<\infty$.

Approximation of Poisson point process

Let $\mathcal{N}_{n}=\left\{\eta_{1}, \eta_{2}, \ldots \eta_{n}\right\}$ be i.i.d. points with uniform distribution on the unit cube $[0,1]^{d}, S_{n}=t_{n}\left(0, \mathcal{N}_{n}^{*}\right)$. Let
$\mathcal{N}_{n}^{*}=\left\{n^{1 / d}\left(\eta_{i}-\eta_{1}\right)\right\}$ be the scatter (scaled and shifted points) of \mathcal{N}. Then, we have the following proposition.

Approximation of Poisson point process

Let $\mathcal{N}_{n}=\left\{\eta_{1}, \eta_{2}, \ldots \eta_{n}\right\}$ be i.i.d. points with uniform distribution on the unit cube $[0,1]^{d}, S_{n}=t_{n}\left(0, \mathcal{N}_{n}^{*}\right)$. Let
$\mathcal{N}_{n}^{*}=\left\{n^{1 / d}\left(\eta_{i}-\eta_{1}\right)\right\}$ be the scatter (scaled and shifted points) of \mathcal{N}. Then, we have the following proposition.

Theorem

1. $\mathcal{N}_{n}^{*} \rightarrow \mathcal{N}^{0}$ in distribution.
2. Let $\left\{e_{i}: i=1, \ldots n-1\right\}$ be the edge-lengths of S_{n}. Then

$$
\sum_{i}^{n}\left|e_{i}\right|^{d} \rightarrow I_{d} \text { in } L^{2}
$$

3. Let $\Delta_{n, i}$ be the proportion of vertices of S_{n} with degree i, then for each i :

$$
\mathbb{E}\left[\Delta_{n, i}\right] \rightarrow \mathbb{P}[D=i]
$$

Local convergence of finite sets

A sequence of nice sets X_{n} is said to converge locally to a nice set X is there exist a labelling of $X_{n}=\left\{x_{n 1}, x_{n 2}, \ldots\right\}$ and
$X=\left\{x_{1}, x_{2}, \ldots\right\}$ such that:

1. $x_{n i} \rightarrow x_{i}$ for all i.
2. For any proper $C_{L}=[-L, L]^{d}$ (i.e., boundary of L does not intersect with $X),\left|X_{n} \cap C_{L}\right| \rightarrow\left|X \cap C_{L}\right|$.

Local convergence of graphs

Let $X_{n}=\left\{x_{n 1}, x_{n 2}, \ldots\right\}$ converge locally to $X=\left\{x_{1}, x_{2}, \ldots\right\}$, and h_{n}, h be graphs with vertex set X_{n} and X respectively, we say that h_{n} converge locally to h, if for any proper C_{L}, there exists
$n_{0}=n_{0}(L)$ such that for all $n \geq n_{0}$:

1. if $\left(x_{n i}, x_{n j}\right)$ is an edge of h_{n} with $x_{n i} \in C_{L}$ then $\left(x_{i}, x_{j}\right)$ is an edge of h.
2. if $\left(x_{i}, x_{j}\right)$ is an edge of h with $x_{i} \in C_{L}$ then $\left(x_{n i}, x_{n j}\right)$ is an edge of h_{n}.
