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Euclidean minimal spanning tree (MST)

Let X = {x1,X2, ..., Xy} be points in RY (d > 2). The minimal
spanning tree (MST) t with vertex set X is a tree whose sum of
the edge-lengths are minimum.
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Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random
points obtained by a Poisson point process.
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Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random
points obtained by a Poisson point process.
What are these functionals?

» Degree of a vertex.

» Sum of the d-th powers of edge-lengths incident at a vertex.
(d is the dimension)
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Poisson point process

Definition
A point process A is a Poisson point process on R? with intensity
measure A if it satisfies the following:
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Poisson point process

Definition
A point process A is a Poisson point process on R? with intensity
measure A if it satisfies the following:
» For any relatively compact set B (i.e. closure(B) is compact),
the number of points of A" in B, |N'N B is a Poisson random
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Poisson point process

Definition
A point process A is a Poisson point process on R? with intensity
measure A if it satisfies the following:

» For any relatively compact set B (i.e. closure(B) is compact),

the number of points of A" in B, |N'N B is a Poisson random
variable with parameter A(B).
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» For any finite number of pairwise disjoint relatively compact
sets By, By, ..., By, the random variables [N N By, ..., |N N By|
are independent.
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If the Poisson point process N is stationary then
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Stationary Poisson point process

If the Poisson point process N\ is stationary then

» The intensity measure A(B) = pA(B) (p is a constant, A
Lebesgue measure on RY).

» Palm probability: Informally, it is the distribution of N/
conditioned that a typical point of this process is located at 0.

» Its Palm probability is equal to N U dg := N°.
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Definition
A set X = {x1,xa, ...} of finite or countably finite points of R
(d > 2) is called nice if

» X is locally finite, i.e. every bounded subset of R? has finite
number of points of X.

» All the interpoint distances are distinct, i.e. for any two
distinct pair of points {x1,x2} = {x3,xa}, |x1 — x2| # |x3 — xa.

Examples

» The Poisson point process A is a.s. nice.
> Lets, =) i ;1/iand ~ be an irrational number.
Xn — {_’YSna ceey —7YS1, 51 00 Sn}
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Construction of MST

Tree starting from a point

Let X be a nice set and x € X. The tree starting from x, t.(x), is
constructed inductively in the following way:
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Tree starting from a point
Let X be a nice set and x € X. The tree starting from x, t.(x), is
constructed inductively in the following way:
» Let t1(x) be the tree with vertex set {x}.
> Let ty(x) be the tree at obtained at nth step with vertex set
Vi, ={m,n2,..mn} (where n; = x). Let np41 be the point of
X\ V,, which is closest to the set V,, and z € V,, be such a
closest point. Then, t,11(x) is obtained by adding a new edge

(Nn+1,2) to t,.
> too(x) = U2 ta(x).
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Example

Figure: Construction of t,(x)
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» For y1,y» € X, an edge (y1,y2) € g(X) if
(yiny) € tOO(yﬁ) LJtOO(y?)-

Examples
» If | X| = nthen g(X) = too(x) = ty(x) for any x € X.

» For X, = {—~sn, ..., —VS1, 51, -, Sn}, &(Xn) =

_‘/5.‘_,. s, _?51 Vs, 8, S, sz S, - - Sp

» For X = U,'len, g(X) =

¥ ¥ + —3
oo s, s, v S 8y 8,5 ..
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Properties of g(X)

Lemma
Let X be an infinite nice set. Then, g(X) is a forest and the
components are infinite.

Proof.
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Properties of g(X)

Lemma
Let X be an infinite nice set. Then, g(X) is a forest and the
components are infinite.

Proof.

1. Observation: If an edge (y1,y2) € tso(x) then either (y1, y2)
is an edge of to(y1) or it is an edge of too()2).

2. Let x € X. Then by above observation t.(x) C g(X) proving
that components are infinite.

3. Suppose there is a cycle y1, yo, ...vk, y1. Reorder them such
that |yx — y1| is the maximum among all distances. Then
(y1,yk) is neither an edge € to(y1) nor € too(yk)-
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MSF of stationary Poisson point process, g(/\)

Lemma

Let N° = N'U o, T be the connected component of 0 in g(N©),
D be the degree of 0 in T and Ly, Ly, ..., Lp be the edge-lengths
incident at 0. Then,

1. D < by where by is a constant.
2. E[D] =2.
3. Iy= Z,-IE[L?] < 00.
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Approximation of Poisson point process

Let N, = {n1,m2,...ny} be i.i.d. points with uniform distribution

on the unit cube [0,1]9, S, = t,(0, N¥). Let
N = {n¥9(n; —n1)} be the scatter (scaled and shifted points) of

N. Then, we have the following proposition.
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Approximation of Poisson point process

Let N, = {n1,m2,...ny} be i.i.d. points with uniform distribution

on the unit cube [0,1]9, S, = t,(0, N¥). Let
N = {n¥9(n; —n1)} be the scatter (scaled and shifted points) of

N. Then, we have the following proposition.

Theorem
1. N} — NO in distribution.
2. Let {ej:i=1,...n—1} be the edge-lengths of S,.Then

n
Z |e,-|d — Id in L2.
i

3. Let A, ; be the proportion of vertices of S, with degree i,

then for each i:
E[A,i] — P[D = i].
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Local convergence of finite sets
A sequence of nice sets X, is said to converge locally to a nice set
X is there exist a labelling of X,, = {xn1, xn2, ...} and
X = {x1,x2, ...} such that:
1. x,i — x; for all i.

2. For any proper C; = [—L, L]? (i.e., boundary of L does not
intersect with X), | X, N C.| — [ XN Cy.

Local convergence of graphs
Let X, = {Xn1, Xn2, ...} converge locally to X = {xy,xp, ...}, and
hn, h be graphs with vertex set X, and X respectively, we say that
h,, converge locally to h, if for any proper C;, there exists
no = no(L) such that for all n > ng:
L. if (Xni, Xnj) is an edge of h, with x,; € C; then (x;,x;) is an
edge of h.
2. if (xj, x;) is an edge of h with x; € C; then (Xpj, Xn;) is an
edge of hy,.
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