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Euclidean minimal spanning tree (MST)

Let X = {x1, x2, ..., xn} be points in Rd (d ≥ 2). The minimal
spanning tree (MST) t with vertex set X is a tree whose sum of
the edge-lengths are minimum.∑

e∈t
|e| = min

G

∑
e∈G
|e|
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Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random
points obtained by a Poisson point process.

What are these functionals?

I Degree of a vertex.

I Sum of the d-th powers of edge-lengths incident at a vertex.
(d is the dimension)
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Poisson point process

Definition
A point process N is a Poisson point process on Rd with intensity
measure Λ if it satisfies the following:

I For any relatively compact set B (i.e. closure(B) is compact),
the number of points of N in B, |N ∩ B| is a Poisson random
variable with parameter Λ(B).

P[|N ∩ B| = k] = e−Λ(B) Λ(B)k

k!

I For any finite number of pairwise disjoint relatively compact
sets B1,B2, ...,Bn, the random variables |N ∩B1|, ..., |N ∩Bn|
are independent.
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Stationary Poisson point process

If the Poisson point process N is stationary then

I The intensity measure Λ(B) = ρλ(B) (ρ is a constant, λ
Lebesgue measure on Rd).

I Palm probability: Informally, it is the distribution of N
conditioned that a typical point of this process is located at 0.

I Its Palm probability is equal to N ∪ δ0 := N o .
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Nice sets

Definition
A set X = {x1, x2, ...} of finite or countably finite points of Rd

(d ≥ 2) is called nice if

I X is locally finite, i.e. every bounded subset of Rd has finite
number of points of X .

I All the interpoint distances are distinct, i.e. for any two
distinct pair of points {x1, x2} = {x3, x4}, |x1− x2| 6= |x3− x4|.

Examples

I The Poisson point process N is a.s. nice.

I Let sn =
∑n

i=1 1/i and γ be an irrational number.
Xn = {−γsn, ...,−γs1, s1, ..., sn}
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Construction of MST

Tree starting from a point

Let X be a nice set and x ∈ X . The tree starting from x , t∞(x), is
constructed inductively in the following way:

I Let t1(x) be the tree with vertex set {x}.
I Let tn(x) be the tree at obtained at nth step with vertex set

Vn = {η1, η2, ...ηn} (where η1 = x). Let ηn+1 be the point of
X\Vn which is closest to the set Vn and z ∈ Vn be such a
closest point. Then, tn+1(x) is obtained by adding a new edge
(ηn+1, z) to tn.

I t∞(x) = ∪∞i=1tn(x).
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Example

Figure: Construction of tn(x)
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Construction of MST

The graph g(X )

The graph g(X ) on a nice set X is defined in the following way:

I Vertex set of g(X ) is X .

I For y1, y2 ∈ X , an edge (y1, y2) ∈ g(X ) if
(y1, y2) ∈ t∞(y1) ∪ t∞(y2).

Examples

I If |X | = n then g(X ) = t∞(x) = tn(x) for any x ∈ X .

I For Xn = {−γsn, ...,−γs1, s1, ..., sn}, g(Xn) =

I For X = ∪i≥1Xn, g(X ) =
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Properties of g(X )

Lemma
Let X be an infinite nice set. Then, g(X ) is a forest and the
components are infinite.

Proof.

1. Observation: If an edge (y1, y2) ∈ t∞(x) then either (y1, y2)
is an edge of t∞(y1) or it is an edge of t∞(y2).

2. Let x ∈ X . Then by above observation t∞(x) ⊂ g(X ) proving
that components are infinite.

3. Suppose there is a cycle y1, y2, ...yk , y1. Reorder them such
that |yk − y1| is the maximum among all distances. Then
(y1, yk) is neither an edge ∈ t∞(y1) nor ∈ t∞(yk).
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MSF of stationary Poisson point process, g(N )

Lemma
Let N 0 = N ∪ δ0, T be the connected component of 0 in g(N 0),
D be the degree of 0 in T and L1, L2, ..., LD be the edge-lengths
incident at 0.Then,

1. D ≤ bd where bd is a constant.

2. E[D] = 2.

3. ld =
∑

i E[Ldi ] <∞.
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Approximation of Poisson point process

Let Nn = {η1, η2, ...ηn} be i.i.d. points with uniform distribution
on the unit cube [0, 1]d , Sn = tn(0,N ∗n ). Let
N ∗n = {n1/d(ηi − η1)} be the scatter (scaled and shifted points) of
N . Then, we have the following proposition.

Theorem

1. N ∗n → N 0 in distribution.

2. Let {ei : i = 1, ...n − 1} be the edge-lengths of Sn.Then

n∑
i

|ei |d → ld in L2.

3. Let ∆n,i be the proportion of vertices of Sn with degree i ,
then for each i :

E[∆n,i ]→ P[D = i ].
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Local convergence of finite sets

A sequence of nice sets Xn is said to converge locally to a nice set
X is there exist a labelling of Xn = {xn1, xn2, ...} and
X = {x1, x2, ...} such that:

1. xni → xi for all i .

2. For any proper CL = [−L, L]d (i.e., boundary of L does not
intersect with X ), |Xn ∩ CL| → |X ∩ CL|.

Local convergence of graphs

Let Xn = {xn1, xn2, ...} converge locally to X = {x1, x2, ...}, and
hn, h be graphs with vertex set Xn and X respectively, we say that
hn converge locally to h, if for any proper CL, there exists
n0 = n0(L) such that for all n ≥ n0:

1. if (xni , xnj) is an edge of hn with xni ∈ CL then (xi , xj) is an
edge of h.

2. if (xi , xj) is an edge of h with xi ∈ CL then (xni , xnj) is an
edge of hn.
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