Asymptotics for Euclidean minimal spanning trees on random points by David Aldous and J. Michael Steele

Bharath Roy Choudhury

ENS-PSL INRIA

19 February 2020

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

# Euclidean minimal spanning tree (MST)

Let  $X = \{x_1, x_2, ..., x_n\}$  be points in  $\mathbb{R}^d$   $(d \ge 2)$ . The minimal spanning tree (MST) t with vertex set X is a tree whose sum of the edge-lengths are minimum.

$$\sum_{e \in t} |e| = \min_{G} \sum_{e \in G} |e|$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random points obtained by a Poisson point process.

# Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random points obtained by a Poisson point process.

What are these functionals?

Degree of a vertex.

# Goal of the authors in this paper:

Study expectation of functionals on the MST on Euclidean random points obtained by a Poisson point process.

What are these functionals?

- Degree of a vertex.
- Sum of the d-th powers of edge-lengths incident at a vertex. (d is the dimension)

## Poisson point process

### Definition

A point process  $\mathcal{N}$  is a Poisson point process on  $\mathbb{R}^d$  with intensity measure  $\Lambda$  if it satisfies the following:

## Poisson point process

### Definition

A point process  $\mathcal{N}$  is a Poisson point process on  $\mathbb{R}^d$  with intensity measure  $\Lambda$  if it satisfies the following:

For any relatively compact set B (i.e. closure(B) is compact), the number of points of N in B, |N ∩ B| is a Poisson random variable with parameter Λ(B).

$$\mathbb{P}[|\mathcal{N} \cap B| = k] = e^{-\Lambda(B)} \frac{\Lambda(B)^k}{k!}$$

## Poisson point process

### Definition

A point process  $\mathcal{N}$  is a Poisson point process on  $\mathbb{R}^d$  with intensity measure  $\Lambda$  if it satisfies the following:

For any relatively compact set B (i.e. closure(B) is compact), the number of points of  $\mathcal{N}$  in B,  $|\mathcal{N} \cap B|$  is a Poisson random variable with parameter  $\Lambda(B)$ .

$$\mathbb{P}[|\mathcal{N} \cap B| = k] = e^{-\Lambda(B)} \frac{\Lambda(B)^k}{k!}$$

▶ For any finite number of pairwise disjoint relatively compact sets  $B_1, B_2, ..., B_n$ , the random variables  $|N \cap B_1|, ..., |N \cap B_n|$  are independent.

If the Poisson point process  ${\mathcal N}$  is stationary then

・ロト ・母 ト ・ 言 ・ ・ 小口 ト ・ 小口 ト

### If the Poisson point process $\ensuremath{\mathcal{N}}$ is stationary then

The intensity measure Λ(B) = ρλ(B) (ρ is a constant, λ Lebesgue measure on ℝ<sup>d</sup>).

### If the Poisson point process ${\cal N}$ is stationary then

- The intensity measure Λ(B) = ρλ(B) (ρ is a constant, λ Lebesgue measure on ℝ<sup>d</sup>).
- Palm probability: Informally, it is the distribution of N conditioned that a typical point of this process is located at 0.

### If the Poisson point process ${\cal N}$ is stationary then

- The intensity measure Λ(B) = ρλ(B) (ρ is a constant, λ Lebesgue measure on ℝ<sup>d</sup>).
- Palm probability: Informally, it is the distribution of N conditioned that a typical point of this process is located at 0.

(日) (日) (日) (日) (日) (日) (日)

5/13

▶ Its Palm probability is equal to  $\mathcal{N} \cup \delta_0 := \mathcal{N}^o$ .

### Definition A set $X = \{x_1, x_2, ...\}$ of finite or countably finite points of $\mathbb{R}^d$ $(d \ge 2)$ is called nice if

### Definition

A set  $X = \{x_1, x_2, ...\}$  of finite or countably finite points of  $\mathbb{R}^d$   $(d \ge 2)$  is called nice if

➤ X is locally finite, i.e. every bounded subset of ℝ<sup>d</sup> has finite number of points of X.

### Definition

A set  $X = \{x_1, x_2, ...\}$  of finite or countably finite points of  $\mathbb{R}^d$  $(d \ge 2)$  is called nice if

- ➤ X is locally finite, i.e. every bounded subset of ℝ<sup>d</sup> has finite number of points of X.
- ► All the interpoint distances are distinct, i.e. for any two distinct pair of points {x<sub>1</sub>, x<sub>2</sub>} = {x<sub>3</sub>, x<sub>4</sub>}, |x<sub>1</sub> x<sub>2</sub>| ≠ |x<sub>3</sub> x<sub>4</sub>|.

### Definition

A set  $X = \{x_1, x_2, ...\}$  of finite or countably finite points of  $\mathbb{R}^d$  $(d \ge 2)$  is called nice if

- ➤ X is locally finite, i.e. every bounded subset of ℝ<sup>d</sup> has finite number of points of X.
- ► All the interpoint distances are distinct, i.e. for any two distinct pair of points {x<sub>1</sub>, x<sub>2</sub>} = {x<sub>3</sub>, x<sub>4</sub>}, |x<sub>1</sub> x<sub>2</sub>| ≠ |x<sub>3</sub> x<sub>4</sub>|.

### Examples

• The Poisson point process  $\mathcal{N}$  is a.s. nice.

### Definition

A set  $X = \{x_1, x_2, ...\}$  of finite or countably finite points of  $\mathbb{R}^d$  $(d \ge 2)$  is called nice if

- ➤ X is locally finite, i.e. every bounded subset of ℝ<sup>d</sup> has finite number of points of X.
- ► All the interpoint distances are distinct, i.e. for any two distinct pair of points {x<sub>1</sub>, x<sub>2</sub>} = {x<sub>3</sub>, x<sub>4</sub>}, |x<sub>1</sub> x<sub>2</sub>| ≠ |x<sub>3</sub> x<sub>4</sub>|.

### Examples

• The Poisson point process  $\mathcal{N}$  is a.s. nice.

• Let 
$$s_n = \sum_{i=1}^n 1/i$$
 and  $\gamma$  be an irrational number.  
 $X_n = \{-\gamma s_n, ..., -\gamma s_1, s_1, ..., s_n\}$ 

### Tree starting from a point

Let X be a nice set and  $x \in X$ . The tree starting from x,  $t_{\infty}(x)$ , is constructed inductively in the following way:

#### Tree starting from a point

Let X be a nice set and  $x \in X$ . The tree starting from x,  $t_{\infty}(x)$ , is constructed inductively in the following way:

• Let  $t_1(x)$  be the tree with vertex set  $\{x\}$ .

#### Tree starting from a point

Let X be a nice set and  $x \in X$ . The tree starting from x,  $t_{\infty}(x)$ , is constructed inductively in the following way:

• Let  $t_1(x)$  be the tree with vertex set  $\{x\}$ .

▶ Let  $t_n(x)$  be the tree at obtained at nth step with vertex set  $V_n = \{\eta_1, \eta_2, ..., \eta_n\}$  (where  $\eta_1 = x$ ). Let  $\eta_{n+1}$  be the point of  $X \setminus V_n$  which is closest to the set  $V_n$  and  $z \in V_n$  be such a closest point. Then,  $t_{n+1}(x)$  is obtained by adding a new edge  $(\eta_{n+1}, z)$  to  $t_n$ .

#### Tree starting from a point

Let X be a nice set and  $x \in X$ . The tree starting from x,  $t_{\infty}(x)$ , is constructed inductively in the following way:

• Let  $t_1(x)$  be the tree with vertex set  $\{x\}$ .

▶ Let  $t_n(x)$  be the tree at obtained at nth step with vertex set  $V_n = \{\eta_1, \eta_2, ..., \eta_n\}$  (where  $\eta_1 = x$ ). Let  $\eta_{n+1}$  be the point of  $X \setminus V_n$  which is closest to the set  $V_n$  and  $z \in V_n$  be such a closest point. Then,  $t_{n+1}(x)$  is obtained by adding a new edge  $(\eta_{n+1}, z)$  to  $t_n$ .

$$t_{\infty}(x) = \bigcup_{i=1}^{\infty} t_n(x).$$



### Figure: Construction of $t_n(x)$



Figure: Construction of  $t_n(x)$ 



### Figure: Construction of $t_n(x)$



### Figure: Construction of $t_n(x)$

The graph g(X)

The graph g(X) on a nice set X is defined in the following way:

The graph g(X)

The graph g(X) on a nice set X is defined in the following way:

• Vertex set of g(X) is X.

# The graph g(X)

The graph g(X) on a nice set X is defined in the following way:

- Vertex set of g(X) is X.
- ▶ For  $y_1, y_2 \in X$ , an edge  $(y_1, y_2) \in g(X)$  if  $(y_1, y_2) \in t_{\infty}(y_1) \cup t_{\infty}(y_2)$ .

## The graph g(X)

The graph g(X) on a nice set X is defined in the following way:

• Vertex set of g(X) is X.

▶ For 
$$y_1, y_2 \in X$$
, an edge  $(y_1, y_2) \in g(X)$  if  $(y_1, y_2) \in t_{\infty}(y_1) \cup t_{\infty}(y_2)$ .

### Examples

• If 
$$|X| = n$$
 then  $g(X) = t_{\infty}(x) = t_n(x)$  for any  $x \in X$ .

## The graph g(X)

The graph g(X) on a nice set X is defined in the following way:

• Vertex set of g(X) is X.

▶ For 
$$y_1, y_2 \in X$$
, an edge  $(y_1, y_2) \in g(X)$  if  $(y_1, y_2) \in t_{\infty}(y_1) \cup t_{\infty}(y_2)$ .

### Examples

► If 
$$|X| = n$$
 then  $g(X) = t_{\infty}(x) = t_n(x)$  for any  $x \in X$ .  
► For  $X_n = \{-\gamma s_n, ..., -\gamma s_1, s_1, ..., s_n\}$ ,  $g(X_n) =$ 

### The graph g(X)

The graph g(X) on a nice set X is defined in the following way:

• Vertex set of g(X) is X.

▶ For 
$$y_1, y_2 \in X$$
, an edge  $(y_1, y_2) \in g(X)$  if  $(y_1, y_2) \in t_{\infty}(y_1) \cup t_{\infty}(y_2)$ .

### Examples

▶ If |X| = n then g(X) = t<sub>∞</sub>(x) = t<sub>n</sub>(x) for any x ∈ X.
▶ For X<sub>n</sub> = {-γs<sub>n</sub>, ..., -γs<sub>1</sub>, s<sub>1</sub>, ..., s<sub>n</sub>}, g(X<sub>n</sub>) =
→ y<sub>s<sub>n</sub>..., -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub> -y<sub>s<sub>1</sub></sub> -y<sub>s<sub>1</sub> -y<sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ▲日 >

Properties of g(X)

Lemma

Let X be an infinite nice set. Then, g(X) is a forest and the components are infinite.

Proof.



```
Properties of g(X)
```

Lemma

Let X be an infinite nice set. Then, g(X) is a forest and the components are infinite.

Proof.

1. **Observation:** If an edge  $(y_1, y_2) \in t_{\infty}(x)$  then either  $(y_1, y_2)$  is an edge of  $t_{\infty}(y_1)$  or it is an edge of  $t_{\infty}(y_2)$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

```
Properties of g(X)
```

Lemma

Let X be an infinite nice set. Then, g(X) is a forest and the components are infinite.

Proof.

- 1. **Observation:** If an edge  $(y_1, y_2) \in t_{\infty}(x)$  then either  $(y_1, y_2)$  is an edge of  $t_{\infty}(y_1)$  or it is an edge of  $t_{\infty}(y_2)$ .
- 2. Let  $x \in X$ . Then by above observation  $t_{\infty}(x) \subset g(X)$  proving that components are infinite.

Properties of g(X)

Lemma

Let X be an infinite nice set. Then, g(X) is a forest and the components are infinite.

Proof.

- 1. **Observation:** If an edge  $(y_1, y_2) \in t_{\infty}(x)$  then either  $(y_1, y_2)$  is an edge of  $t_{\infty}(y_1)$  or it is an edge of  $t_{\infty}(y_2)$ .
- 2. Let  $x \in X$ . Then by above observation  $t_{\infty}(x) \subset g(X)$  proving that components are infinite.
- 3. Suppose there is a cycle  $y_1, y_2, ..., y_k, y_1$ . Reorder them such that  $|y_k y_1|$  is the maximum among all distances. Then  $(y_1, y_k)$  is neither an edge  $\in t_{\infty}(y_1)$  nor  $\in t_{\infty}(y_k)$ .



MSF of stationary Poisson point process,  $g(\mathcal{N})$ 

#### Lemma

Let  $\mathcal{N}^0 = \mathcal{N} \cup \delta_0$ ,  $\mathcal{T}$  be the connected component of 0 in  $g(\mathcal{N}^0)$ , D be the degree of 0 in  $\mathcal{T}$  and  $L_1, L_2, ..., L_D$  be the edge-lengths incident at 0. Then,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ● 臣 ○ のへで

- 1.  $D \le b_d$  where  $b_d$  is a constant. 2.  $\mathbb{E}[D] = 2$ .
- 3.  $I_d = \sum_i \mathbb{E}[L_i^d] < \infty$ .

# Approximation of Poisson point process

Let  $\mathcal{N}_n = \{\eta_1, \eta_2, ..., \eta_n\}$  be i.i.d. points with uniform distribution on the unit cube  $[0, 1]^d$ ,  $S_n = t_n(0, \mathcal{N}_n^*)$ . Let  $\mathcal{N}_n^* = \{n^{1/d}(\eta_i - \eta_1)\}$  be the scatter (scaled and shifted points) of  $\mathcal{N}$ . Then, we have the following proposition.

## Approximation of Poisson point process

Let  $\mathcal{N}_n = \{\eta_1, \eta_2, ..., \eta_n\}$  be i.i.d. points with uniform distribution on the unit cube  $[0, 1]^d$ ,  $S_n = t_n(0, \mathcal{N}_n^*)$ . Let  $\mathcal{N}_n^* = \{n^{1/d}(\eta_i - \eta_1)\}$  be the scatter (scaled and shifted points) of  $\mathcal{N}$ . Then, we have the following proposition.

Theorem

1. 
$$\mathcal{N}_n^* \to \mathcal{N}^0$$
 in distribution.

2. Let  $\{e_i : i = 1, ..., n - 1\}$  be the edge-lengths of  $S_n$ . Then

$$\sum_{i}^{n} |e_i|^d \to I_d \text{ in } L^2.$$

3. Let  $\Delta_{n,i}$  be the proportion of vertices of  $S_n$  with degree *i*, then for each *i*:

$$\mathbb{E}[\Delta_{n,i}] \to \mathbb{P}[D=i].$$

#### Local convergence of finite sets

A sequence of nice sets  $X_n$  is said to converge locally to a nice set X is there exist a labelling of  $X_n = \{x_{n1}, x_{n2}, ...\}$  and  $X = \{x_1, x_2, ...\}$  such that:

- 1.  $x_{ni} \rightarrow x_i$  for all *i*.
- 2. For any proper  $C_L = [-L, L]^d$  (i.e., boundary of L does not intersect with X),  $|X_n \cap C_L| \rightarrow |X \cap C_L|$ .

#### Local convergence of graphs

Let  $X_n = \{x_{n1}, x_{n2}, ...\}$  converge locally to  $X = \{x_1, x_2, ...\}$ , and  $h_n, h$  be graphs with vertex set  $X_n$  and X respectively, we say that  $h_n$  converge locally to h, if for any proper  $C_L$ , there exists  $n_0 = n_0(L)$  such that for all  $n \ge n_0$ :

- 1. if  $(x_{ni}, x_{nj})$  is an edge of  $h_n$  with  $x_{ni} \in C_L$  then  $(x_i, x_j)$  is an edge of h.
- 2. if  $(x_i, x_j)$  is an edge of h with  $x_i \in C_L$  then  $(x_{ni}, x_{nj})$  is an edge of  $h_n$ .