
Testing in Python
François Durand (Nokia Bell Labs)

Python Academy, Lincs, 29 January 2020

© 2020 Nokia Public

GitHub Repo of the Talk

https://github.com/francois-durand/python_academy_on_testing

2 / 32 © 2020 Nokia Public

https://github.com/francois-durand/python_academy_on_testing

Preliminary Example

From file my_plus:
def my_plus(x, y):

return x + y

if __name__ == '__main__':
assert my_plus(3, 4) == 7
assert my_plus('a', 'b') == 'ab'

Experiment it:
• Run this code.
• What happens if we modify the function with y + x?

3 / 32 © 2020 Nokia Public

Benefits of Testing

• Detect quickly when you break something, and what.
• Detect quickly when another developer’s contribution breaks something.
• Detect quickly when a change in the environment (OS, database management
system, file system) breaks something.

• Incite to think about the inputs and the outputs of a function, and about the
API in general. If one see that it is difficult to write tests for some code, it
may lead to refactoring in order to make it cleaner and clearer.

• Test-Driven Development (TDD) / Behavior Driven Development (BDD).

4 / 32 © 2020 Nokia Public

Testing Solutions in Python: Overview

• Unittest: the standard library of Python. Heavy to use. No real advantage
compared to...

• Pytest: the package that everybody uses.
• Doctest: tests that are included in the doctests.

A typical solution (and I recommend it):
• To write some tests in doctest syntax anyway.
• To write some tests in pytest syntax optionally for the tests that you don’t
want to see in the documentation, or for more advanced tests.

• To use the pytest runner to run all the tests: indeed, it is also able to run
tests in unittest or doctest format.

5 / 32 © 2020 Nokia Public

Plan

Doctest

Pytest

Running the tests

Conclusion

6 / 32 © 2020 Nokia Public

Plan

Doctest

Pytest

Running the tests

Conclusion

7 / 32 © 2020 Nokia Public

Basic Example
From file my_get.py:
def my_get(lst, index, default=None):

"""Get an element in a list by position, with a default value.

>>> my_get(['a', 'b', 'c'], 2, 'z')
'c'
>>> my_get(['a', 'b', 'c'], 42, 'z')
'z'
"""
try:

return lst[index]
except IndexError:

return default

• Syntax: like interactive Python.
• Can be mixed with regular documentation.
• In PyCharm: “Run...”, then choose Doctest.
• What happens if we change a result?

8 / 32 © 2020 Nokia Public

Ellipsis

From file MyClass:
class MyClass:

"""A nice class.

>>> my_object = MyClass()
>>> my_object # doctest: +ELLIPSIS
<...MyClass object at ...>
"""
pass

• What happens without the magic comment?

9 / 32 © 2020 Nokia Public

Skip

From file my_randint:
from random import randint

def my_randint(a, b):
"""Random integer.

Returns

int

A random integer between `a` and `b` (both included).

Examples

>>> my_randint(0, 0)
0
>>> my_randint(0, 10) # doctest: +SKIP
7

"""
return randint(a, b)

• What happens without the magic comment?

10 / 32 © 2020 Nokia Public

Normalize Spaces

From file my_np_array:
import numpy as np

def my_np_array(lst):
"""Convert list to numpy array.

>>> my_np_array([1, 2, 3642]) # doctest: +NORMALIZE_WHITESPACE
array([1, 2, 3642])
"""
return np.array(lst)

• What happens without the magic comment?
• Here another solution would be to put the exact output (which is
deterministic). But it is not always convenient or even possible, so the magic
comment may be an option.

11 / 32 © 2020 Nokia Public

Blank Lines

From file print_some_text:
def print_some_text():

"""Print some text.

>>> print_some_text()
This is a fake text.
<BLANKLINE>
It features a blank line.
"""
print("This is a fake text.")
print()
print("It features a blank line.")

• What happens without the mention <BLANKLINE>?

12 / 32 © 2020 Nokia Public

Errors

From file my_division:
def my_division(x, y):

"""Divide.

>>> my_division(42, 0)
Traceback (most recent call last):
ZeroDivisionError: division by zero
"""
return x / y

• What happens if we remove the expected result?
• For an error, only the first and last lines are necessary in the expected output.

13 / 32 © 2020 Nokia Public

Plan

Doctest

Pytest

Running the tests

Conclusion

14 / 32 © 2020 Nokia Public

Running Example

Remember the function in the file my_get.py:
def my_get(lst, index, default=None):

"""Get an element in a list by position, with a default value."""
try:

return lst[index]
except IndexError:

return default

15 / 32 © 2020 Nokia Public

“Manual” Testing Without Pytest

From file test_my_get_manual.py:
from python_academy_on_testing.my_get import my_get

my_beautiful_list = ['a', 'b', 'c']
element = my_get(lst=my_beautiful_list, index=2, default='z')
assert element == 'c'

• Run this file.
• What happens if we change the result?

16 / 32 © 2020 Nokia Public

Testing With Pytest

From file test_my_get_pytest.py:
from python_academy_on_testing.my_get import my_get

def test_get():
my_beautiful_list = ['a', 'b', 'c']
element = my_get(lst=my_beautiful_list, index=2, default='z')
assert element == 'c'

• Syntax: functions test* in files test*.
• In PyCharm: “Run...”, then choose pytest.
• What happens if we change a result?
• Advantages:

− Clearer message in case of failed test.
− As we will see later, pytest can automatically run all the tests in the project, has a

system of “fixtures”, is configurable, etc.

17 / 32 © 2020 Nokia Public

Errors

From file test_my_get_pytest_error.py:
import pytest
from python_academy_on_testing.my_get import my_get

def test():
with pytest.raises(TypeError):

my_beautiful_list = ['a', 'b', 'c']
element = my_get(lst=my_beautiful_list, index='some string', default='z')

• Here you need to import pytest.
• If you want more information about the error (for example, to check the error
message), you can catch it with the keyword as. Cf. function
test_error_message in the file.

18 / 32 © 2020 Nokia Public

Fixtures
From file test_my_get_pytest_fixture.py:
from pytest import fixture
from python_academy_on_testing.my_get import my_get

@fixture()
def my_beautiful_list():

return ['a', 'b', 'c']

def test_get(my_beautiful_list):
element = my_get(lst=my_beautiful_list, index=2, default='z')
assert element == 'c'

def test_missing_element(my_beautiful_list):
element = my_get(lst=my_beautiful_list, index=42, default='z')
assert element == 'z'

• Here my_beautiful_list is available for all the tests.
• But it is not a shared variable. Cf. test_removed_element and
test_the_element_is_still_here in the file.

• Some tests may not use the fixture. Cf. test_tuple in the file.

19 / 32 © 2020 Nokia Public

Yield Fixtures

From file test_my_get_pytest_yield_fixture.py:
import os
from pytest import yield_fixture
from python_academy_on_testing.my_get import my_get

@yield_fixture()
def my_fid():

Setup: done before every test using this fixture. Example: connect to a database, a file...
fid = open(os.path.join(os.path.dirname(__file__), 'my_file.txt'))

The ``return`` is replaced by a ``yield``.
yield fid

Teardown: done after every test using this fixture. Example: disconnect from the database, the file...
fid.close()

def test_get(my_fid):
my_beautiful_list = []
for line in my_fid:

assert line[0] in {'a', 'b', 'c'}
my_beautiful_list.append(line[0])

assert my_get(lst=my_beautiful_list, index=2, default='z') == 'c'
assert my_get(lst=my_beautiful_list, index=42, default='z') == 'z'

20 / 32 © 2020 Nokia Public

A Few Words on Unittest

From file test_my_get_unittest.py:
import unittest
from python_academy_on_testing.my_get import my_get

class TestMyGet(unittest.TestCase):

def test(self):
my_beautiful_list = ['a', 'b', 'c']
element = my_get(lst=my_beautiful_list, index=2, default='z')
self.assertEqual(element, 'c')

• The basic syntax is heavier: you need to derive from class TestCase.
• The syntax for setup and teardown is also heavier.
• If you define a setup and teardown, you have not choice but to use them for
all the tests.

Do not use unittest, use pytest.

21 / 32 © 2020 Nokia Public

Plan

Doctest

Pytest

Running the tests

Conclusion

22 / 32 © 2020 Nokia Public

Running All the Tests

In a shell: py.test (without specifying a specific file to test).

In PyCharm (instructions from https://my-toy-package.readthedocs.io/):
• Menu Run → Edit Configurations.
• Add a new configuration by clicking the + button → Python tests → pytest.
• Give a name to the configuration, e.g. All tests.
• Ignore the warning and validate.

Default behavior: runs all the functions “test*” included in files “test*”.

23 / 32 © 2020 Nokia Public

https://my-toy-package.readthedocs.io/

Setting Pytest Options

Available solutions:

• In the command line,
• In PyCharm’s test configuration, in the field Additional Arguments.
• In a configuration file pytest.ini or, better tox.ini (we will see why in a few
slides). Cf. example in the GitHub Repo.

− Add a section [pytest].
− Use the keywords addopts = (add options) and put the options here.

24 / 32 © 2020 Nokia Public

Pytest Options

I recommend to always use:
• --doctest-modules: runs also the doctests.
• --showlocals: show local variables on failed tests.
• --capture=no: actually print the print instructions of the code.
• --exitfirst (or -x): the first failure stops the tests.
• --failed-first: begin by running the tests that failed last time.

Other useful options:
• -vv: very verbose (display more information).
• --ignore=PATH: ignore the tests in this path.
• -k EXPRESSION: run only the tests containing this string.

25 / 32 © 2020 Nokia Public

Tox and Travis CI

• Tox combines:
− Automated testing,
− Virtual environments.

• It runs your tests in several environments: e.g. Python 3.6, 3.7 and 3.8. Or
with/without numba, etc.

• It can be used directly as a command-line tool, or via a continuous
integration framework such as Travis CI.

• Configuration: file tox.ini. Its syntax is compatible with the one of
pytest.ini, but more general.

To get up and running quickly with these tools, cf.
https://my-toy-package.readthedocs.io/.

26 / 32 © 2020 Nokia Public

https://my-toy-package.readthedocs.io/

Plan

Doctest

Pytest

Running the tests

Conclusion

27 / 32 © 2020 Nokia Public

Take-Aways

• If you are new to testing, use doctest!
• Use the pytest runner anyway, even if you write only doctests.
• When to write tests?

− When you just tested your new function or class in a notebook, why not seize
the opportunity to make a doctest out of it by a simple copy-paste?

− When writing the documentation of a function or class.
− When a bug is detected, write the corresponding test (which fails) then solve it.
− When you want to improve your coverage.
− ...

28 / 32 © 2020 Nokia Public

References (1)

Sam & Max website:
• http://sametmax.com/
un-gros-guide-bien-gras-sur-les-tests-unitaires-en-python-partie-1
and the following articles (there are 5 parts).

• http://sametmax.com/des-astuces-avec-pytest/.
• http://sametmax.com/parametres-sympas-pour-pytest/.
• http:
//sametmax.com/parametres-par-defaut-pour-la-commande-py-test/.

• http://sametmax.com/se-simplifier-les-tests-python-avec-pytest/.
Warning: this site contains explicit language and images.

29 / 32 © 2020 Nokia Public

http://sametmax.com/un-gros-guide-bien-gras-sur-les-tests-unitaires-en-python-partie-1
http://sametmax.com/un-gros-guide-bien-gras-sur-les-tests-unitaires-en-python-partie-1
http://sametmax.com/des-astuces-avec-pytest/
http://sametmax.com/parametres-sympas-pour-pytest/
http://sametmax.com/parametres-par-defaut-pour-la-commande-py-test/
http://sametmax.com/parametres-par-defaut-pour-la-commande-py-test/
http://sametmax.com/se-simplifier-les-tests-python-avec-pytest/

References (2)

Official documentation:
• https://docs.pytest.org/.
• https://docs.python.org/3/library/doctest.html.

My Toy Package contains instruction to configure a package with all the
convenient development tools, including testing:
https://my-toy-package.readthedocs.io/.

30 / 32 © 2020 Nokia Public

https://docs.pytest.org/
https://docs.python.org/3/library/doctest.html
https://my-toy-package.readthedocs.io/

Thanks For Your Attention!

31 / 32 © 2020 Nokia Public

	Doctest
	Pytest
	Running the tests
	Conclusion

