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Introduction/motivation

 Densification of wireless networks (loT, mobile phones, Bluetooth
devices) -> need to study the traffic of wireless networks

« Already studied to some extent through queueing theory (Shannon)

A lot of connections depending on a lot of factors -> hard to compute
Does not completely model interference in the system

Instead: consider the network as the realization of a spatial
dynamic random process



Outline of the presentation
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Point processes

» A stochastic process with values in R% (d > 1) is called a point
process (PP)

 Can also be considered as random measures (random
variables in a measure space)

« Used to model a variety of physical processes (trees in a forest,
times of departure from a queueing system, etc.)



Point processes

« Poisson point process (PPP): the most convenient type of PP

* Number of points in B distributed according a Poisson law of
parameter A|B|

« Mutual independence property: if B4, ..., B,, are disjoint Borel sets,
®,.(By), ..., ®.(B,,) are independent

* Intensity measure:
A(B) = E[®(B)]

For a stationary point process:
da > 0, A= avy



Mathematical framework

- Network: compact D c R?

- Arrival of transmitters: Poisson rain

of intensity 4 > 0

- Each transmitter has a file of size

distributed according &€ (%)

- Recelvers are located at distance R >

0 from transmitters

- @, : point process of transmitters in

the system attime ¢t

- Point leaves the system when
transmission Is over

-> Poisson dipolar model

e
S
.
IS

’Q
*
‘Q
*




Mathematical framework

 Path-loss function #: non-negative, bounded and integrable
* Interference experienced at point x in the system:

o) = ) elx =yl
yeED\{x}

[(R)
NO + I(x, Cbt)
- Sojourn time of point located at x,,:
u
d, = inf(t > tp:f R(x,, @, )du > Lp)
t

p

« Rate-of-file function:
R(x, q)t) —




lllustration
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Two realizations: 2 = 0.05 and A = 0.5.

Left: after 200 000 iterations. Few users are present in the system and are
gathered in small clusters

Right: after 10 000 iterations, users have filled up the whole region and
transmission is nearly impossible
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Markov properties

» Our point processes Is a piece-wise constant counting
measure and the dynamics are Markovian

(D;) >0 1S @ Markov jJump process on M (D)
(®,(D));s( Is a spatial birth-and-death process (SBD)
 Transition probabilities:
P(birth at x during dt) = A|D|dt

1
[P(death of x during dt) = ZR(x, d,)dt

Goal : study the dynamics of the SBD



Mathematical framework

Main parameter for the dynamics: A (arrival rate)

There exists an arrival rate A, such that:
- If 2 < 1., the chain is stable (positive recurrent)
-1f 2 > 1., the system is unstable (transient)

Main result :
(R

N, =—
© Ll



Stochastic geometry tools

Palm calculus:
®, stationary point process (invariant by translation)
IE?DO[-] . average conditioned by the events

ex: IE?DO [1(0, d,)]: interference experienced by the typical
user

Powerful tool to reduce random sums:

E| ) f(r,®0)| = ES, [£(0, @0)]E[@o(D)]

XECDO




Stochastic geometry tools

Campbell's Theorem:
N PP of intensity measure A

E Z f69| = | foncen



Stochastic geometry tools

Miyazawa's Rate Conservation Law (RCL):

(Y(t))t>0real—valued stochastic process, right continuous with
left limits, N PP of intensity 2 and (Y'(t)),, = such that:

1 1
Y(1) = Y(0) + J Y'(s)ds + f (Y(s) = Y(s™))N(ds)
0 0
Then:

E[Y'(0)] + AEX[Y(0) —=Y(07)] =0



Proof of the main result

We place ourselves in the stationary framework and use the RCL
3 times:

e 1st use: to the number of transmitters

We state that the number of points alive is the number of
points alive minus the number of points that have died

AlS| = A4
Ag4: Intensity measure of the point process of death instants



Proof of the main result

« 2nd use: to the information present in the system

Information present in the system is equal to the
Information that arrived minus the information processed

ASIL=E| > RGrb0)| = ES, (RO, @) El0(D)]

XE(DO




Proof of the main result

* 3rd use: to the interference experienced in the system
Apply the RCL to the stochastic process Iy = ¥,cq, I(x, P;)

AIS|E[T] = A4EY[ L]
E'[7] = E'[L]

J =1+ — 1y, L = I, — I)- and the Palm expectations associated
with arrival process and departure process



Proof of the main result

Lastly, compute E'[7] and E'[£]:
- Increase In interference caused by an arrival in x: +21(x, ®;)

. T | 2E[®,D]I4I
E'[7] = 2E[I(0, ®y)] = 2E z £(l[xID| = S|

Caution: use the death |(:))rocess
2 R(O, ®,y)I(0, D
IEi[L] _ CDO[ ( O) ( 0)]
A|S|L

E[®o(D)]



Proof of the main result

Finally, we get:

ol = Eq, [R(0, @)I(0, dp)]

LA
Since Eg_[R(0, ®)I(0, Py)] < £(R), we get:

(R
2, < LB
il



Proof of the main result

To get the reciprocal:
« Use a discretization of the space in squares of area ¢

 Build a new stochastic process that stochastically dominates
(i.e. if it is stable, our dynamics are stable)

Outline: iIf I(x, ®") = I(x, ®) and &’ is stable, ® is stable

 Prove the stablility of the dominating process using the fluid
limit theory



Simulation setup

For a Markov jump process, interevent times are exponentially
distributed

» Birth process: t ~ 5( : )

Als|
« Death process: for each x € &, t, ~& (R(chp ))
T

Simulation parameters:
-D =[-7.5,7.5)? -R=1

(1 i -L. =1
- P(x) = {Tent ifx <2

. Oelse




Proof of the main result

Realization for 4 = 0.1

) A (close to the cutoff rate)
1) 1 / I.LI']‘ f‘ v \ "ihf EVOlUtIOn Of CI)t(D)
" W I\A\”M“t“h\(‘w?\ ;ﬁl\! f -> We can observe
o0 | ) W" excursions, which can go
quite high

154{1)

As A gets closer to 4., the
excursions will go higher
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Extension of the problem: random
channel fading

Transmissions can be impacted by channel fading (noise, etc.)
Add a fading coefficient h,,,~£(1) for each link (x, y)

hy L(R)
NO T ZyECDt\{x} hxye(”x T y”)

R(x,®;) = E,,

All results can be generalized to this case



Extensions of the problem : multivariate
case

Use service differentiation:
- K orthogonal bands are available to transmit

- A user arriving in the system picks a number 1 < i < K of bands
according to a given distribution (p;)<;<x

- He then picks uniformly at random the i bands used to transmit

Different dynamics:
- Users transmitting on disjoint sets of bands will ignore each other

- Users usinlg a lot of bands will slow the traffic for other users... but
will spend less time in the system



Extensions of the problem : multivariate
case

For a user of type i:

I(x,d,) = z 7 0T, 2(0lx =yl
yED\{x}

i4(R)

R(x, ®,) =
(x’ t) NO + I(X, th)




Extensions of the problem : multivariate
case

The equations are more complex but the tools used stay the
same

Generalized cut-off arrival rate (conjecture):

o 2(R) K
° L|I€llpy + 2p, + - + Kpx

With K = 2,p, = 0.8 and p, = 0.2, 1. ~ 0.2001
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Extension of the problem : mulativariate
case

Last interesting quantity to look
at: mean sojourn time in the
system.
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Thank you for your attention



