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Introduction

(First-order) logic
Represent causal relations
between variables by a
directed acyclic graph

Probabilities
Weight these causal relations
by probabilities that implicitly
account for non-represented
variables
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Introduction

“Belief networks are directed
acyclic graphs in which the
nodes represent propositions
(or variables), the arcs signify
direct dependencies between
the linked propositions, and
the strengths of these de-
pendencies are quantified
by conditional probabilities”
(Pearl, 1986)
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Bayesian networks are also …

• A memory-efficient way of storing a PMF
• Based on simple probability rules
(more details in a few slides)

• Inspired by human causal reasoning (Pearl, 1986, 1988)
• Used for decision taking if a utility function is provided
• Applied in many fields: medecine diagnoses,
turbo-codes, (programming) language detection, …

• Related to other models: Markov random fields,
Markov chains, hidden Markov models, …
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References: Pearl’s articles and book

• J. Pearl (1982). “Reverend Bayes on Inference Engines: A
Distributed Hierarchical Approach”. In: AAAI’82
→ Belief propagation in causal trees

• J. Pearl (1986). “Fusion, propagation, and structuring in
belief networks”. In: Artificial Intelligence
→ Belief propagation in causal trees and polytrees

• J. Pearl (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann
→ A complete reference

(thanks Achille for providing me with this book)
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References: Textbooks

• T. D. Nielsen and F. V. Jensen (2007). Bayesian Networks
and Decision Graphs. Springer-Verlag
→ A lot of examples in Chapters 2 and 3

• D. Koller, N. Friedman, and F. Bach (2009). Probabilistic
Graphical Models: Principles and Techniques. MIT Press

• M. Jordan (Last modified in 2015). An Introduction to
Probabilistic Graphical Models.

→ Definition and belief probagation
(thanks Nathan for pointing this reference)
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Outline

Reminders on probability theory

Bayesian networks

Belief propagation in trees

Belief propagation in polytrees
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Independence and conditional independence

Remark: We work exclusively with discrete random variables

• A and B aremarginally independent (written A⊥⊥B) if one
of these three equivalent conditions is satisfied:

− P(A,B)= P(A)P(B)
− P(A |B)= P(A)
− P(B |A)= P(B)

• A and B are conditonally independent given C (written
A⊥⊥B |C) if one of these three equivalent conditions is
satisfied:

− P(A,B |C)= P(A |C)P(B |C)
− P(A |B,C)= P(A |C)
− P(B |A,C)= P(B |C)
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Useful rules

• The chain rule of probabilities
If A1, . . . ,An are random variables, we have

P(A1, . . . ,An)= P(A1)×P(A2 |A1)×P(A3 |A1,A2)
×·· ·×P(An |A1, . . . ,An−1)

• Law of total probability
If A and B are two random variables,

P(B)=∑
A
P(B |A)P(A)
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Useful rules

• Bayes’ rule
If A and B are two random variables,

P(B |A)= P(A |B)P(B)
P(A)

We can see P(A) as a normalizing constant: we can first
compute P(B |A)∝ P(A |B)P(B) for each value of B and
then normalize to obtain P(B |A) without computing P(A)
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Glossary

• Belief in a random variable (conviction in french)
Marginal distribution of this random variable
(given the value of some observed variables)

• Observe a random variable

• Evidence (piece of evidence)
The set of random variables that have been observed
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The Student example

Course
difficulty

Student
intelligence

Grade Baccalauréat

Reference
letter

Borrowed from (Koller, Friedman, and Bach, 2009)

D I

G B

L
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The Student example

• Local Markov property
Each node is conditionally independent
of its non-descendants given its parents:

D⊥⊥ {I,B}, I⊥⊥D, G⊥⊥B | {D, I},

B⊥⊥ {D,G,L} | I, L⊥⊥ {D, I,B} |G

• Chain rule of Bayesian networks
By the chain rule of probabilities:

P(D, I,G,B,L)= P(D)P(I |D)P(G |D, I)P(B |D, I,G)P(L |D, I,G,B),

= P(D)P(I)P(G |D, I)P(B | I)P(L |G)

These two definitions are equivalent

D I

G B

L
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The Student example

Course
difficulty

Student
intelligence

Grade Baccalauréat

Reference
letter

P(D) P(I)

P(G |D, I)

P(B | I)

P(L |G)

D I

G B

L
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Bayesian networks in general

Described by

• A directed acyclic graph
− Nodes ∼ (discrete) random variables X1, . . . ,Xn
− Arrows ∼ conditional (in)dependencies

• Local conditional probability tables (CPT)
− P(Xi |parents(Xi)) for each node Xi

D I

G B

L
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Bayesian networks in general

Two equivalent definitions

• Local Markov property
Each node is conditionally independent
of its non-descendants given its parents

• Chain rule of Bayesian networks

P(X1, . . . ,Xn)=
n∏
i=1

P(Xi |parents(Xi))

Proof of the equivalence: Corollary 4 p.20 of (Pearl, 1988)

D I

G B

L
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Base case: serial connection

X

Y

y

Z

Fl
ow

of
in
fo
rm

at
io
n

//

X⊥⊥Z | Y P(X,Y,Z)= P(X)P(Y |X)P(Z | Y)

• Interpretation: chain of causality
X “causes” Y that “causes” Z

• Information can flow between X and Z
through Y (that is, observing X
changes our belief in Z and vice versa),
unless Y is observed

• Example: Markov chains
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Base case: diverging connection

X

Y

y

Z

//

X⊥⊥Z | Y P(X,Y,Z)= P(X | Y)P(Y)P(Z | Y)

• Interpretation: a single root cause Y with two observable
consequences X and Z

• Information can flow between X and Z through Y,
unless Y is observed
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Base case: converging connection

X

Y

y

Z

//

X⊥⊥Z P(X,Y,Z)= P(X)P(Y |X,Z)P(Z)

• Interpretation: two possible explanations X and Z
for an observed consequence Y

• “Explaining away” effect: information cannot flow
between X and Z, unless Y is observed
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Implied independencies

Similar to the “Strong Markov property”
of Markov chains

Which are correct?
1 G⊥⊥B?

No

2 B⊥⊥ L?

No

3 D⊥⊥ L?

No

4 D⊥⊥B?

Yes (by the local Markov property applied to D)

5 D⊥⊥B |G?

No (“explaining away” effect)

6 D⊥⊥B | {I,G}?

Yes

D I

G B

L
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Implied independencies

Proof of 6 D⊥⊥B | {I,G}

P(D,B | I,G)

= P(G |D, I,B)P(D,B | I)
P(G | I)

(
Bayes’
rule

)
= P(G |D, I)P(D,B | I)

P(G | I)
(
local Markov property

applied to G

)
= P(G |D, I)P(D | I)P(B |D, I)

P(G | I)
(
definition of condi-
tional probabilities

)
= P(G |D, I)P(D | I)

P(G | I) P(B |D, I)

= P(D |G, I)P(B |D, I)
(
Bayes’
rule

)
= P(D |G, I)P(B | I,G)

(
local Markov property

applied to B

)

D I

G B

L
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Memory and time complexity

Parameters

n number of random variables
(typically, n∼ hundreds or thousands)

r number of values each variable can take
d↑ maximum number of parents of a node

Memory complexity
• If we store the probability distribution: O(rn) entries
• If we store the node parents and the conditional
probability tables: O(n(r+ rd

↑
))=O(nrd

↑
) entries

What about the time complexity?
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Inference

“A guess that you make or an opinion that you form based on
the information that you have” (Cambridge dictionary)

→ Bayesian networks: compute or update the belief in each
variable given some evidence

Belief propagation, a.k.a. sum-product message passing:
Propagate the information through the network, starting
from the evidence node(s)

• Each variable is a “separate processor” (a neuron?) that
knows its own CPT and the messages received from its
direct neighbors (Pearl, 1982)

• Dynamic programming

24/40 © 2018 Nokia Public



Inference

“A guess that you make or an opinion that you form based on
the information that you have” (Cambridge dictionary)
→ Bayesian networks: compute or update the belief in each

variable given some evidence

Belief propagation, a.k.a. sum-product message passing:
Propagate the information through the network, starting
from the evidence node(s)

• Each variable is a “separate processor” (a neuron?) that
knows its own CPT and the messages received from its
direct neighbors (Pearl, 1982)

• Dynamic programming

24/40 © 2018 Nokia Public



Inference

“A guess that you make or an opinion that you form based on
the information that you have” (Cambridge dictionary)
→ Bayesian networks: compute or update the belief in each

variable given some evidence

Belief propagation, a.k.a. sum-product message passing:
Propagate the information through the network, starting
from the evidence node(s)

• Each variable is a “separate processor” (a neuron?) that
knows its own CPT and the messages received from its
direct neighbors (Pearl, 1982)

• Dynamic programming

24/40 © 2018 Nokia Public



Inference

“A guess that you make or an opinion that you form based on
the information that you have” (Cambridge dictionary)
→ Bayesian networks: compute or update the belief in each

variable given some evidence

Belief propagation, a.k.a. sum-product message passing:
Propagate the information through the network, starting
from the evidence node(s)

• Each variable is a “separate processor” (a neuron?) that
knows its own CPT and the messages received from its
direct neighbors (Pearl, 1982)

• Dynamic programming

24/40 © 2018 Nokia Public



Inference

“A guess that you make or an opinion that you form based on
the information that you have” (Cambridge dictionary)
→ Bayesian networks: compute or update the belief in each

variable given some evidence

Belief propagation, a.k.a. sum-product message passing:
Propagate the information through the network, starting
from the evidence node(s)

• Each variable is a “separate processor” (a neuron?) that
knows its own CPT and the messages received from its
direct neighbors (Pearl, 1982)

• Dynamic programming

24/40 © 2018 Nokia Public



Outline

Reminders on probability theory

Bayesian networks

Belief propagation in trees

Belief propagation in polytrees
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Tree Bayesian network

A

B

C D

E F

P(A)

P(B |A)

P(C |B) P(D |B)

P(E |D) P(F |D)

Each node (except the root)
has at most one parent

Each node separates the
tree: its non-descendants and
the subtrees rooted at each of
its children are conditionally
independent given this node

Remark: We will explain the propagation algorithm on this toy
example borrowed from (Pearl, 1988)
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No evidence

A

B

C D

E F

X

Y

P(X)

• P(A): parameter

• P(B)=
∑
A
P(B |A)P(A)

• P(C)=
∑
B
P(C |B)P(B)

• P(D)=∑
B
P(D |B)P(B)

Top-down propagation
Complexity O(nr2)
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Three pieces of evidence

A

B

c D

e f

X

Y

• Evidence: We observe that
C= c, E= e, and F= f

• Objective: Compute the
belief BEL(X)= P(X | c,e,f)
of each node X

• Principle: Propagate the
information through the
network, starting from the
evidence nodes
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Causal and diagnostic support

A

B

c D

e f

X

Y

By Bayes’ rule:

• P(A | c,e,f)= P(c,e,f |A)P(A)
P(c,e,f)

∝ P(c,e,f |A)P(A)

• P(B | c,e,f)= P(c,e,f |B)P(B)
P(c,e,f)

∝ P(c,e,f |B)P(B)

• P(D | c,e,f)= P(e,f |D,c)P(D | c)
P(e,f | c)

= P(e,f |D)P(D | c)
P(e,f | c)

∝ P(e,f |D)P(D | c)
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Causal and diagnostic support

A

B

c D

e f

X

Y

For each X, we compute

• Diagnostic support P
(
evidence
below X

∣∣ X)
Bottom-up propagation

• Causal support P
(
X

∣∣ evidence
above X

)
Top-down propagation

BEL(X)∝ P
(
evidence
below X

∣∣ X)
×P

(
X

∣∣ evidence
above X

)
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Diagnostic support P
(
evidence
below X

∣∣ X)
A

B

c D

e f

X

Y

P(e |D) P(f |D)

P(c |B) P(e,f |B)

Bottom-up propagation

• P(e,f |D)= P(e |D)P(f |D)

• P(c,e,f |B)= P(c |B)P(e,f |B)

Compute P(e,f |B):
P(e,f |B)=∑

D
P(e,f |B,D)P(D |B)

=∑
D
P(e,f |D)P(D |B)
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Summary
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X
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Top-down
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X

∣∣ evidence
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Algorithm

• Diagnostic support P
(
evidence
below X

∣∣ X)
Bottom-up propagation

• Causal support P
(
X

∣∣ evidence
above X

)
Top-down propagation

In general
• Use a topological ordering
• Complexity: O(rd↓+ r2+ r)
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Additional remarks

A
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X
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Top-down
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(
X

∣∣ evidence
above Y
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P
(
evidence
below Y

∣∣ X)

• If the evidence node is not a
leaf: add a phantom node

• The calculations can be
written as matrix products

− Belief, causal and
diagnostic supports,
messages ∼ Vectors

− CPT ∼ Matrix

• Asynchronous / parallel
updates: acknowledgements
(Pearl, 1982, 1986, 1988)
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Outline

Reminders on probability theory

Bayesian networks

Belief propagation in trees

Belief propagation in polytrees
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Polytree (or singly-connected) Bayesian network

D I

G B

L

The underlying undirected graph
is a tree

Separation properties
• Given a node, the non-
descendants and the
subtrees rooted at each child
are independent

• If we don’t condition on a
node nor any of its
descendants, the inversed
subtrees rooted at its
ancestors are independent
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Belief propagation

P(X | evidence)∝ P
(
evidence
below X

∣∣ X)
×P

(
X

∣∣ evidence
above X

)

X

A B

C D

↑AX ↑BX

↓XC ↓XD

• Diagnostic support P
(
evidence
below X

∣∣ X)
Bottom-up propagation
↓XC and ↓XD are independent
given X

• Causal support P
(
X

∣∣ evidence
above X

)
Top-down propagation
↑AX and ↑BX are independent
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Conclusion

• Bayesian networks
A memory-efficient way of storing a PMF by leveraging
conditional independencies between variables

• Belief propagation
A time-efficient algorithm for computing the belief

− Asynchronous, parallelizable
− Exact in (poly)trees
− In general, extended to the junction tree algorithm

and to other (approximate) algorithms
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