Belief Propagation in Bayesian Networks

Céline Comte

NOKIA Bell Labs

Reading Group "Network Theory" November 5, 2018

Introduction

(First-order) logic

Represent causal relations between variables by a directed acyclic graph

Probabilities

Weight these causal relations by probabilities that implicitly account for non-represented variables

PROBABILISTIC REASONING IN INTELLIGENT SYSTEMS:

Networks of Plausible Inference

Introduction

"Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities" (Pearl, 1986)

PROBABILISTIC REASONING IN INTELLIGENT SYSTEMS:

Networks of Plausible Inference

Bayesian networks are also ...

- A memory-efficient way of storing a PMF
- Based on simple probability rules (more details in a few slides)
- Inspired by human causal reasoning (Pearl, 1986, 1988)
- Used for decision taking if a utility function is provided
- Applied in many fields: medecine diagnoses, turbo-codes, (programming) language detection, ...
- Related to other models: Markov random fields, Markov chains, hidden Markov models, ...

References: Pearl's articles and book

- J. Pearl (1982). "Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach". In: AAAI'82
 - → Belief propagation in causal trees
- J. Pearl (1986). "Fusion, propagation, and structuring in belief networks". In: Artificial Intelligence
 - $\rightarrow\,$ Belief propagation in causal trees and polytrees
- J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann
 - \rightarrow A complete reference
 - (thanks Achille for providing me with this book)

References: Textbooks

• T. D. Nielsen and F. V. Jensen (2007). Bayesian Networks and Decision Graphs. Springer-Verlag

 \rightarrow A lot of examples in Chapters 2 and 3

- D. Koller, N. Friedman, and F. Bach (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press
- M. Jordan (Last modified in 2015). An Introduction to Probabilistic Graphical Models.
 - → Definition and belief probagation (thanks Nathan for pointing this reference)

Reminders on probability theory

Bayesian networks

Belief propagation in trees

Belief propagation in polytrees

Reminders on probability theory

Bayesian networks

Belief propagation in trees

Belief propagation in polytrees

Independence and conditional independence

Remark: We work exclusively with discrete random variables

Independence and conditional independence

Remark: We work exclusively with discrete random variables

- A and B are **marginally independent** (written A **⊥** B) if one of these three equivalent conditions is satisfied:
 - P(A,B) = P(A)P(B)

$$- P(A | B) = P(A)$$

$$- P(B \mid A) = P(B)$$

Independence and conditional independence

Remark: We work exclusively with discrete random variables

- A and B are **marginally independent** (written A **⊥** B) if one of these three equivalent conditions is satisfied:
 - P(A,B) = P(A)P(B)

$$- P(A | B) = P(A)$$

- $P(B \mid A) = P(B)$
- A and B are **conditonally independent** given C (written A ⊥ B | C) if one of these three equivalent conditions is satisfied:
 - $P(A, B \mid C) = P(A \mid C)P(B \mid C)$
 - P(A | B, C) = P(A | C)
 - $P(B \mid A, C) = P(B \mid C)$

Useful rules

• The chain rule of probabilities

If A_1, \ldots, A_n are random variables, we have

$$P(A_1,...,A_n) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1,A_2)$$

$$\times \cdots \times P(A_n | A_1,...,A_{n-1})$$

Useful rules

• The chain rule of probabilities

If A_1, \ldots, A_n are random variables, we have

$$P(A_1,...,A_n) = P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1,A_2)$$

$$\times \cdots \times P(A_n | A_1,...,A_{n-1})$$

• Law of total probability

If A and B are two random variables,

$$\mathsf{P}(\mathsf{B}) = \sum_{\mathsf{A}} \mathsf{P}(\mathsf{B} | \mathsf{A}) \mathsf{P}(\mathsf{A})$$

Useful rules

• Bayes' rule

If A and B are two random variables,

$$\mathsf{P}(\mathsf{B} | \mathsf{A}) = \frac{\mathsf{P}(\mathsf{A} | \mathsf{B})\mathsf{P}(\mathsf{B})}{\mathsf{P}(\mathsf{A})}$$

We can see P(A) as a **normalizing constant**: we can first compute P(B|A) \propto P(A|B)P(B) for each value of B and then normalize to obtain P(B|A) without computing P(A)

• **Belief** in a random variable (**conviction** in french) Marginal distribution of this random variable (given the value of some observed variables)

- **Belief** in a random variable (**conviction** in french) Marginal distribution of this random variable (given the value of some observed variables)
- Observe a random variable

Glossary

- **Belief** in a random variable (**conviction** in french) Marginal distribution of this random variable (given the value of some observed variables)
- Observe a random variable
- **Evidence** (piece of evidence) The set of random variables that have been observed

Reminders on probability theory

Bayesian networks

Belief propagation in trees

Belief propagation in polytrees

Borrowed from (Koller, Friedman, and Bach, 2009)

Borrowed from (Koller, Friedman, and Bach, 2009)

Local Markov property

Each node is conditionally independent of its non-descendants given its parents:

 $D \perp\!\!\!\!\perp \{I, B\}, I \perp\!\!\!\!\perp D, G \perp\!\!\!\!\perp B \mid \{D, I\}, \\ B \perp\!\!\!\!\perp \{D, G, L\} \mid I, L \perp\!\!\!\!\perp \{D, I, B\} \mid G$

Local Markov property

Each node is conditionally independent of its non-descendants given its parents:

 $D \perp\!\!\!\!\perp \{I, B\}, I \perp\!\!\!\!\perp D, G \perp\!\!\!\!\perp B \mid \{D, I\}, \\ B \perp\!\!\!\!\perp \{D, G, L\} \mid I, L \perp\!\!\!\!\perp \{D, I, B\} \mid G$

• Chain rule of Bayesian networks By the chain rule of probabilities:

$$\begin{split} \mathsf{P}(\mathsf{D},\mathsf{I},\mathsf{G},\mathsf{B},\mathsf{L}) &= \mathsf{P}(\mathsf{D})\mathsf{P}(\mathsf{I} \mid \mathsf{D})\mathsf{P}(\mathsf{G} \mid \mathsf{D},\mathsf{I})\mathsf{P}(\mathsf{B} \mid \mathsf{D},\mathsf{I},\mathsf{G})\mathsf{P}(\mathsf{L} \mid \mathsf{D},\mathsf{I},\mathsf{G},\mathsf{B}), \\ &= \mathsf{P}(\mathsf{D})\mathsf{P}(\mathsf{I})\mathsf{P}(\mathsf{G} \mid \mathsf{D},\mathsf{I})\mathsf{P}(\mathsf{B} \mid \mathsf{I})\mathsf{P}(\mathsf{L} \mid \mathsf{G}) \end{split}$$

Local Markov property

Each node is conditionally independent of its non-descendants given its parents:

 $D \perp\!\!\!\!\perp \{I, B\}, I \perp\!\!\!\!\perp D, G \perp\!\!\!\!\perp B \mid \{D, I\}, \\ B \perp\!\!\!\!\perp \{D, G, L\} \mid I, L \perp\!\!\!\!\perp \{D, I, B\} \mid G$

• Chain rule of Bayesian networks By the chain rule of probabilities:

$$\begin{split} \mathsf{P}(\mathsf{D},\mathsf{I},\mathsf{G},\mathsf{B},\mathsf{L}) &= \mathsf{P}(\mathsf{D})\mathsf{P}(\mathsf{I} \mid \mathsf{D})\mathsf{P}(\mathsf{G} \mid \mathsf{D},\mathsf{I})\mathsf{P}(\mathsf{B} \mid \mathsf{D},\mathsf{I},\mathsf{G})\mathsf{P}(\mathsf{L} \mid \mathsf{D},\mathsf{I},\mathsf{G},\mathsf{B}), \\ &= \mathsf{P}(\mathsf{D})\mathsf{P}(\mathsf{I})\mathsf{P}(\mathsf{G} \mid \mathsf{D},\mathsf{I})\mathsf{P}(\mathsf{B} \mid \mathsf{I})\mathsf{P}(\mathsf{L} \mid \mathsf{G}) \end{split}$$

These two definitions are equivalent

NOKIA Bell Lah

Bayesian networks in general

Described by

- $\ensuremath{\mathsf{A}}$ directed acyclic graph
 - Nodes ~ (discrete) random variables X₁,...,X_n
 - Arrows ~ conditional (in)dependencies
- Local conditional probability tables (CPT)
 - $P(X_i | parents(X_i))$ for each node X_i

Bayesian networks in general

Two equivalent definitions

- Local Markov property Each node is conditionally independent of its non-descendants given its parents
- Chain rule of Bayesian networks

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$$

Proof of the equivalence: Corollary 4 p.20 of (Pearl, 1988)

В

G

$X \perp\!\!\!\!\perp Z \mid Y \qquad P(X,Y,Z) = P(X)P(Y \mid X)P(Z \mid Y)$

 Interpretation: chain of causality X "causes" Y that "causes" Z

 $X \perp Z \mid Y \qquad P(X,Y,Z) = P(X)P(Y \mid X)P(Z \mid Y)$

- Interpretation: chain of causality X "causes" Y that "causes" Z
- Information can flow between X and Z through Y (that is, observing X changes our belief in Z and vice versa), unless Y is observed

 $X \perp\!\!\!\!\perp Z \mid Y \qquad P(X,Y,Z) = P(X)P(Y \mid X)P(Z \mid Y)$

- Interpretation: chain of causality X "causes" Y that "causes" Z
- Information can flow between X and Z through Y (that is, observing X changes our belief in Z and vice versa), unless Y is observed

 $X \perp\!\!\!\!\perp Z \mid Y \qquad P(X,Y,Z) = P(X)P(Y \mid X)P(Z \mid Y)$

- Interpretation: chain of causality X "causes" Y that "causes" Z
- Information can flow between X and Z through Y (that is, observing X changes our belief in Z and vice versa), unless Y is observed

 $X \perp\!\!\!\!\perp Z \mid Y \qquad P(X,Y,Z) = P(X)P(Y \mid X)P(Z \mid Y)$

- Interpretation: chain of causality X "causes" Y that "causes" Z
- Information can flow between X and Z through Y (that is, observing X changes our belief in Z and vice versa), unless Y is observed
- Example: Markov chains

$X \perp Z \mid Y \qquad P(X, Y, Z) = P(X \mid Y)P(Y)P(Z \mid Y)$

 $X \perp\!\!\!\!\perp Z \mid Y \qquad P(X,Y,Z) = P(X \mid Y)P(Y)P(Z \mid Y)$

• Interpretation: a single root cause Y with two observable consequences X and Z

 $X \perp\!\!\!\!\perp Z \mid Y \qquad P(X,Y,Z) = P(X \mid Y)P(Y)P(Z \mid Y)$

- Interpretation: a single root cause Y with two observable consequences X and Z
- Information can flow between X and Z through Y, unless Y is observed

 $X \perp Z \mid Y \qquad P(X, Y, Z) = P(X \mid Y)P(Y)P(Z \mid Y)$

- Interpretation: a single root cause Y with two observable consequences X and Z
- Information can flow between X and Z through Y, unless Y is observed

 $X \perp\!\!\!\!\perp Z \mid Y \qquad P(X,Y,Z) = P(X \mid Y)P(Y)P(Z \mid Y)$

- Interpretation: a single root cause Y with two observable consequences X and Z
- Information can flow between X and Z through Y, unless Y is observed

$X \perp Z \qquad P(X,Y,Z) = P(X)P(Y \mid X,Z)P(Z)$

 $X \perp Z \qquad P(X, Y, Z) = P(X)P(Y \mid X, Z)P(Z)$

• Interpretation: two possible explanations X and Z for an observed consequence Y

 $X \perp Z \qquad P(X, Y, Z) = P(X)P(Y \mid X, Z)P(Z)$

- Interpretation: two possible explanations X and Z for an observed consequence Y
- "Explaining away" effect: information cannot flow between X and Z, unless Y is observed

 $X \perp Z \qquad P(X, Y, Z) = P(X)P(Y \mid X, Z)P(Z)$

- Interpretation: two possible explanations X and Z for an observed consequence Y
- "Explaining away" effect: information cannot flow between X and Z, unless Y is observed

 $X \perp Z \qquad P(X, Y, Z) = P(X)P(Y \mid X, Z)P(Z)$

- Interpretation: two possible explanations X and Z for an observed consequence Y
- "Explaining away" effect: information cannot flow between X and Z, unless Y is observed

Similar to the "Strong Markov property" of Markov chains

Similar to the "Strong Markov property" of Markov chains

Which are correct?

Similar to the "Strong Markov property" of Markov chains

Which are correct? (1) $G \perp B$?

Similar to the "Strong Markov property" of Markov chains

Which are correct? ① G ⊥ B? No

Similar to the "Strong Markov property" of Markov chains

Which are correct? (1) G L B? No (2) B L?

Similar to the "Strong Markov property" of Markov chains

Which are correct? (1) G L B? No (2) B L? No

Similar to the "Strong Markov property" of Markov chains

Which are correct? ① G⊥B? No ② B⊥L? No ③ D⊥L?

Similar to the "Strong Markov property" of Markov chains

Which are correct? ① G⊥B? No ② B⊥L? No ③ D⊥L? No

Similar to the "Strong Markov property" of Markov chains

Which are correct?
① G⊥B? No
② B⊥L? No
③ D⊥L? No
④ D⊥B?

Similar to the "Strong Markov property" of Markov chains

Which are correct?

- ① G⊥B? No
- (2) B⊥L? No
- 3 D ⊥ L? No
- 4 D **L** B? Yes (by the local Markov property applied to D)

Similar to the "Strong Markov property" of Markov chains

Which are correct?
① G⊥B? No
② B⊥L? No
③ D⊥L? No
④ D⊥B? Yes (by the local Markov property applied to D)
⑤ D⊥B|G?

Similar to the "Strong Markov property" of Markov chains

Which are correct?

- G ⊥ B? No
- ② B⊥L? No
- 3 D ⊥ L? No
- 4 D **L** B? Yes (by the local Markov property applied to D)
- (5) D ⊥ B | G? No ("explaining away" effect)

Similar to the "Strong Markov property" of Markov chains

Which are correct? (1) $G \perp B$? No (2) $B \perp L$? No (3) $D \perp L$? No (4) $D \perp B$? Yes (by the local Markov property applied to D) (5) $D \perp B \mid G$? No ("explaining away" effect) (6) $D \perp B \mid \{I, G\}$?

Similar to the "Strong Markov property" of Markov chains

Which are correct? (1) $G \perp B$? No (2) $B \perp L$? No (3) $D \perp L$? No (4) $D \perp B$? Yes (by the local Markov property applied to D) (5) $D \perp B \mid G$? No ("explaining away" effect) (6) $D \perp B \mid \{I, G\}$? Yes

Proof of 6 D ⊥ B | {I,G}

P(D, B | I, G)

Proof of 6 D ⊥ B | {I,G}

Proof of (6) D \perp B | {I, G} P(D, B | I, G) = $\frac{P(G | D, I, B)P(D, B | I)}{P(G | I)}$ (Bayes' rule

$$= P(D | G, I)P(B | I, G)$$

$$= P(D | G, I)P(B | I, G)$$

22/40 © 2018 Nokia

$= P(D \mid G, I)P(B \mid I, G)$

$$= P(D | G, I)P(B | I, G)$$

Parameters

Parameters

n number of random variables (typically, n ~ hundreds or thousands)

Parameters

- n number of random variables (typically, n ~ hundreds or thousands)
- r number of values each variable can take

Parameters

- n number of random variables (typically, n ~ hundreds or thousands)
- r number of values each variable can take
- $\mathsf{d}^\dagger\,$ maximum number of parents of a node

Parameters

- n number of random variables (typically, n ~ hundreds or thousands)
- r number of values each variable can take
- $\mathsf{d}^\dagger\,$ maximum number of parents of a node

Memory complexity

Parameters

- n number of random variables (typically, n ~ hundreds or thousands)
- r number of values each variable can take
- $\mathsf{d}^\dagger\,$ maximum number of parents of a node

Memory complexity

- If we store the probability distribution: $O(r^{\mathsf{n}})$ entries

Parameters

- n number of random variables (typically, n ~ hundreds or thousands)
- r number of values each variable can take
- $\mathsf{d}^\dagger\,$ maximum number of parents of a node

Memory complexity

- If we store the probability distribution: $\mathsf{O}(\mathsf{r}^n)$ entries
- If we store the node parents and the conditional probability tables: $O(n(r + r^{d^{\dagger}})) = O(nr^{d^{\dagger}})$ entries

Parameters

- n number of random variables (typically, n ~ hundreds or thousands)
- r number of values each variable can take
- $\mathsf{d}^\dagger\,$ maximum number of parents of a node

Memory complexity

- If we store the probability distribution: $\mathsf{O}(\mathsf{r}^n)$ entries
- If we store the node parents and the conditional probability tables: $O(n(r + r^{d^{\dagger}})) = O(nr^{d^{\dagger}})$ entries

What about the time complexity?

"A guess that you make or an opinion that you form based on the information that you have" (Cambridge dictionary)

"A guess that you make or an opinion that you form based on the information that you have" (Cambridge dictionary)

→ Bayesian networks: compute or update the belief in each variable given some evidence

"A guess that you make or an opinion that you form based on the information that you have" (Cambridge dictionary)

→ Bayesian networks: compute or update the belief in each variable given some evidence

Belief propagation, a.k.a. **sum-product message passing**: Propagate the information through the network, starting from the evidence node(s)

"A guess that you make or an opinion that you form based on the information that you have" (Cambridge dictionary)

→ Bayesian networks: compute or update the belief in each variable given some evidence

Belief propagation, a.k.a. **sum-product message passing**: Propagate the information through the network, starting from the evidence node(s)

• Each variable is a "separate processor" (a neuron?) that knows its own CPT and the messages received from its direct neighbors (Pearl, 1982)

"A guess that you make or an opinion that you form based on the information that you have" (Cambridge dictionary)

→ Bayesian networks: compute or update the belief in each variable given some evidence

Belief propagation, a.k.a. **sum-product message passing**: Propagate the information through the network, starting from the evidence node(s)

- Each variable is a "separate processor" (a neuron?) that knows its own CPT and the messages received from its direct neighbors (Pearl, 1982)
- Dynamic programming

Reminders on probability theory

Bayesian networks

Belief propagation in trees

Belief propagation in polytrees

Each node (except the root) has at most one parent

Each node (except the root) has at most one parent

Each node (except the root) has at most one parent

Each node (except the root) has at most one parent

Each node **separates** the tree: its non-descendants and the subtrees rooted at each of its children are conditionally independent given this node

Each node (except the root) has at most one parent

Each node **separates** the tree: its non-descendants and the subtrees rooted at each of its children are conditionally independent given this node

Remark: We will explain the propagation algorithm on this toy example borrowed from (Pearl, 1988)

•
$$P(B) = \sum_{A} P(B \mid A)P(A)$$

•
$$P(B) = \sum_{A} P(B \mid A)P(A)$$

•
$$P(B) = \sum_{A} P(B \mid A)P(A)$$

•
$$P(C) = \sum_{B} P(C \mid B)P(B)$$

•
$$P(B) = \sum_{A} P(B \mid A)P(A)$$

•
$$P(C) = \sum_{B} P(C \mid B)P(B)$$

- P(A): parameter
- $P(B) = \sum_{A} P(B \mid A)P(A)$
- $P(C) = \sum_{B} P(C \mid B)P(B)$

•
$$P(D) = \sum_{B} P(D \mid B)P(B)$$

- P(A): parameter
- $P(B) = \sum_{A} P(B \mid A)P(A)$
- $P(C) = \sum_{B} P(C \mid B)P(B)$

•
$$P(D) = \sum_{B} P(D \mid B)P(B)$$

- P(A): parameter
- $P(B) = \sum_{A} P(B \mid A)P(A)$
- $P(C) = \sum_{B} P(C \mid B)P(B)$

•
$$P(D) = \sum_{B} P(D \mid B)P(B)$$

- P(A): parameter
- $P(B) = \sum_{A} P(B \mid A)P(A)$
- $P(C) = \sum_{B} P(C \mid B)P(B)$

•
$$P(D) = \sum_{B} P(D \mid B)P(B)$$

Top-down propagation Complexity $O(nr^2)$

- P(A): parameter
- $P(B) = \sum_{A} P(B \mid A)P(A)$
- $P(C) = \sum_{B} P(C \mid B)P(B)$

•
$$P(D) = \sum_{B} P(D \mid B)P(B)$$

Top-down propagation Complexity $O(nr^2)$

Three pieces of evidence

• **Evidence:** We observe that C = c, E = e, and F = f

Three pieces of evidence

- **Evidence:** We observe that C = c, E = e, and F = f
- **Objective:** Compute the belief BEL(X) = P(X | c, e, f) of each node X

Three pieces of evidence

- **Evidence:** We observe that C = c, E = e, and F = f
- **Objective:** Compute the belief BEL(X) = P(X | c, e, f) of each node X
- **Principle:** Propagate the information through the network, starting from the evidence nodes

By Bayes' rule:

$$P(c, e, f) = \frac{P(e, f | B)P(B)}{P(e, f | C)}$$
$$= \frac{P(e, f | D, c)P(D | c)}{P(e, f | C)}$$
$$= \frac{P(e, f | D)P(D | c)}{P(e, f | C)}$$
$$\propto P(e, f | D)P(D | c)$$

Х

For each X, we compute

- Diagnostic support $P\begin{pmatrix} evidence \\ below X \end{pmatrix}$ Bottom-up propagation
- Causal support $P(X \mid \frac{evidence}{above X})$ Top-down propagation

 $\mathsf{BEL}(X) \propto \mathsf{P}\!\left(\begin{smallmatrix} \text{evidence} \\ \text{below } X \end{smallmatrix} \middle| X \right) \! \times \! \mathsf{P}\!\left(X \bigm {evidence} \\ \begin{smallmatrix} \text{above } X \end{smallmatrix} \right)$

Diagnostic support $P\begin{pmatrix} evidence \\ below X \end{pmatrix}$

Bottom-up propagation

Diagnostic support $P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right)$

Bottom-up propagation

• P(e,f|D) = P(e|D)P(f|D)

Bottom-up propagation

• P(e,f|D) = P(e|D)P(f|D)

Bottom-up propagation

- P(e,f|D) = P(e|D)P(f|D)
- P(c,e,f|B) = P(c|B)P(e,f|B)

Bottom-up propagation

- P(e,f|D) = P(e|D)P(f|D)
- P(c,e,f|B) = P(c|B)P(e,f|B)

Bottom-up propagation

• P(e,f|D) = P(e|D)P(f|D)

Compute P(e,f|B): P(e,f|B) = $\sum_{D} P(e,f|B,D)P(D|B)$ = $\sum_{D} P(e,f|D)P(D|B)$

Bottom-up propagation

• P(e,f|D) = P(e|D)P(f|D)

Compute P(e,f|B): P(e,f|B) = $\sum_{D} P(e,f|B,D)P(D|B)$ = $\sum_{D} P(e,f|D)P(D|B)$

• P(c,e,f|A) = P(c,e,f|A)

Compute P(c,e,f|A):

P(c,e,f|A)

 $= \sum_{B} P(c, e, f \mid A, B) P(B \mid A)$

$$= \sum_{B} P(c, e, f | B) P(B | A)$$

NOKIA Bell Labs

• P(c,e,f|A) = P(c,e,f|A)

Compute P(c, e, f | A):

P(c,e,f|A)

 $=\sum_{B} P(c,e,f|A,B)P(B|A)$

$$= \sum_{B} P(c, e, f | B) P(B | A)$$

NOKIA Bell Labs

• P(c,e,f|A) = P(c,e,f|A)

Compute P(c,e,f|A):

P(c,e,f|A)

 $= \sum_{B} P(c, e, f \mid A, B) P(B \mid A)$

$$= \sum_{B} P(c, e, f | B) P(B | A)$$

Causal support $P(X \mid above X)$

Causal support $P(X \mid above X)$

• P(A): parameter

- P(A): parameter
 - \rightarrow BEL(A) \propto P(c,e,f|A)P(A)

P(A): parameter
 → BEL(A) ∝ P(c,e,f|A)P(A)

•
$$P(B) = \sum_{A} P(B \mid A)P(A)$$

P(A): parameter
 → BEL(A) ∝ P(c,e,f|A)P(A)

•
$$P(B) = \sum_{A} P(B \mid A)P(A)$$

P(A): parameter
 → BEL(A) ∝ P(c,e,f|A)P(A)

•
$$P(B) = \sum_{A} P(B | A)P(A)$$

 $\rightarrow BEL(B) \propto P(c, e, f | B)P(B)$

NOKIA Bell Labs

Causal support $P(X \mid above X)$

•
$$P(D | c) = \sum_{B} P(D | B, c)P(B | c)$$

•
$$P(D | c) = \sum_{B} P(D | B, c)P(B | c)$$

= $\sum_{B}^{B} P(D | B)P(B | c)$

•
$$P(D | c) = \sum_{B} P(D | B, c)P(B | c)$$

= $\sum_{B}^{B} P(D | B)P(B | c)$

• $P(D | c) = \sum_{B} P(D | B, c)P(B | c)$ = $\sum_{B}^{B} P(D | B)P(B | c)$

Compute P(B|c): $P(B|c,e,f) = \frac{P(e,f|B,c)P(B|c)}{P(e,f|c)}$ i.e. P(B|c) $\propto \frac{BEL(B)}{P(e,f|B)}$

• $P(D | c) = \sum_{B} P(D | B, c)P(B | c)$ = $\sum_{B}^{B} P(D | B)P(B | c)$

Compute P(B | c): $P(B | c, e, f) = \frac{P(e, f | B, c)P(B | c)}{P(B | c)}$

i.e.
$$P(B|c) \propto \frac{BEL(B)}{P(e,f|B)}$$

 \rightarrow BEL(D) \propto P(e,f|D)P(D|c)

$$P(D | c) = \sum_{B} P(D | B, c)P(B | c)$$
$$= \sum_{B} P(D | B)P(B | c)$$

Compute P(B | c):

 $P(B | c, e, f) = \frac{P(e, f | B, c)P(B | c)}{P(e, f | c)}$ i.e. $P(B | c) \propto \frac{BEL(B)}{P(e, f | B)}$

Algorithm

Algorithm

 Diagnostic support P(^{evidence} | X) Bottom-up propagation

Algorithm

- Diagnostic support $P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right)$ Bottom-up propagation
- Causal support $P(X \mid \frac{evidence}{above X})$ Top-down propagation

Algorithm

- Diagnostic support $P\begin{pmatrix} evidence \\ below X \end{pmatrix}$ Bottom-up propagation
- Causal support P(X | evidence) above X Top-down propagation

In general

Algorithm

- Diagnostic support $P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right)$ Bottom-up propagation
- Causal support $P(X \mid \frac{evidence}{above X})$ Top-down propagation

In general

Use a topological ordering

Algorithm

- Diagnostic support $P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right)$ Bottom-up propagation
- Causal support $P(X \mid \frac{evidence}{above X})$ Top-down propagation

In general

Use a topological ordering

• Complexity:
$$O(rd^{\downarrow} + r^2 + r)$$

Additional remarks

• If the evidence node is not a leaf: add a phantom node

Additional remarks

- If the evidence node is not a leaf: add a phantom node
- The calculations can be written as matrix products
 - Belief, causal and diagnostic supports, messages ~ Vectors
 - CPT ~ Matrix

Additional remarks

- If the evidence node is not a leaf: add a phantom node
- The calculations can be written as matrix products
 - Belief, causal and diagnostic supports, messages ~ Vectors
 - CPT ~ Matrix
- Asynchronous / parallel updates: acknowledgements

Reminders on probability theory

Bayesian networks

Belief propagation in trees

Belief propagation in polytrees

The underlying undirected graph is a tree

The underlying undirected graph is a tree

Separation properties

The underlying undirected graph is a tree

Separation properties

 Given a node, the nondescendants and the subtrees rooted at each child are independent

The underlying undirected graph is a tree

Separation properties

- Given a node, the nondescendants and the subtrees rooted at each child are independent
- If we don't condition on a node nor any of its descendants, the inversed subtrees rooted at its ancestors are independent

$$P(X | evidence) \propto P(evidence | X) \times P(X | evidence above X)$$

$$P(X | evidence) \propto P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right) \times P\left(X | evidence \\ above X\right)$$

$$P(X | evidence) \propto P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right) \times P\left(X | evidence \\ above X\right)$$

$$P(X | evidence) \propto P(evidence | X) \times P(X | evidence above X)$$

$$P(X | evidence) \propto P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right) \times P\left(X | evidence \\ above X\right)$$

$$P(X | evidence) \propto P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right) \times P\left(X | \begin{array}{c} evidence \\ above X \end{array}\right)$$

 Diagnostic support P(evidence | X) Bottom-up propagation ↓ XC and ↓ XD are independent given X

 $P(X | evidence) \propto P\left(\begin{array}{c} evidence \\ below X \end{array} | X\right) \times P\left(X | evidence \\ above X \end{array}\right)$

- Diagnostic support P(^{evidence} | X) Bottom-up propagation
 XC and ↓ XD are independent given X
- Causal support P(X | evidence above X)
 Top-down propagation
 AX and ↑ BX are independent

Conclusion

Conclusion

• Bayesian networks

A memory-efficient way of storing a PMF by leveraging conditional independencies between variables

Conclusion

• Bayesian networks

A memory-efficient way of storing a PMF by leveraging conditional independencies between variables

Belief propagation

A time-efficient algorithm for computing the belief

- Asynchronous, parallelizable
- Exact in (poly)trees
- In general, extended to the junction tree algorithm and to other (approximate) algorithms

