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The M/G/1 queue with FCFS service discipline

µλ

M The arrival process is Poisson
→ Arrival rate 0<λ<+∞

G The service times are i.i.d. with a general distribution
→ Mean service time 0< 1

µ <+∞
1 A single server
? Infinite queue length

FCFS Customers leave in their arrival order
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More on Poisson processes

t1

Time

• Exponentially distributed inter-arrival times

• The number of arrivals during a time interval of length t
has a Poisson distribution with mean λt.

• The numbers of arrivals during two disjoint intervals are
independent.
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More on Poisson processes
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Time

• Exponentially distributed inter-arrival times
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Queue state

• Xt = number of customers in the queue at time t
• (Xt)t≥0 is not a Markov process (in general)
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Departure time Dn

• Dn = departure time of the n-th customer
• Dn is a regeneration point of (Xt)t≥0
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Departure time Dn

• Dn = departure time of the n-th customer
• Dn is a regeneration point of (Xt)t≥0
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Chain embedded at departure times

• Yn =XDn number of customers left behind customer n
• (Yn)n∈N is a Markov chain
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Chain embedded at departure times

• Because of the FCFS assumption,
Yn = number of customers that arrived since customer n
entered the queue
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Chain embedded at departure times

• Because of the FCFS assumption,
Yn−Yn−1+1= number of customers that arrived
between the departures of customers n−1 and n
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Chain embedded at departure times

• Because of the FCFS assumption,
Yn−Yn−1+1= number of customers that arrived
during the service of customer n
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Chain embedded at departure times

• Because of the FCFS assumption,
Yn− (Yn−1−1)+ = number of customers that arrived
during the service of customer n
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Why is it a Markov chain ?

0 1 2 3 4. . .

p0
p1

p2
p0

p1
p2

• pk = probabily that k customers arrive during the service
pk = time of a customer

• The number of arrivals during a service time of length t
has a Poisson distribution with mean λt.

• Letting F denote the CDF of the service time distribution,

pk =
∫ +∞

0
e−λt

(λt)k

k!
dF(t).

• Independence
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Why is it a Markov chain ?

0 1 2 3 4. . .

p0
p1

p2
p0

p1
p2

• pk = probabily that k customers arrive during the service
pk = time of a customer

• Transition matrix :
p0 p1 p2 p3 . . . pk . . .
p0 p1 p2 p3 . . . pk . . .

p0 p1 p2 . . . pk . . .
p0 p1 . . . pk . . .

p0 . . . pk . . .
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Properties of (Yn)n∈N

0 1 2 3 4. . .

p0
p1

p2
p0

p1
p2

• Irreducible
→ All the states of (Yn)n∈N have the same nature

(positive recurrent, null recurrent or transcient)
→ We just need to know the nature of state 0

• Aperiodic
→ If (Yn)n∈N is positive recurrent, then it is also ergodic

14 © 2017 Nokia Public
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Stability of (Yn)n∈N

0 1 2 3 4. . .

p0
p1

p2
p0

p1
p2

• State 0 is recurrent
⇔ If the queue starts empty, then with probability 1

it empties out an infinite number of times
⇔ If the queue starts empty, then with probability 1

it eventually empties out
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Stability of (Yn)n∈N

0 1 2 3 4. . .

p0
p1

p2
p0

p1
p2

Assume that state 0 is recurrent.
• State 0 is positive recurrent

⇔ If the queue starts empty, then the mean time
until it empties out again is finite

• State 0 is null recurrent
⇔ If the queue starts empty, then the mean time

until it empties out again is infinite
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Busy period

• We just need to look at one busy period of the queue.

Start of a
busy period

End of a
busy period
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Definition

• Random tree

• One node at generation 0
• The children of the nodes of generation n
belong to generation n+1

• The number of children of a node is

− random,
− with a probability distribution that

is the same for all nodes,
− independent of the number of

children of other nodes,

• Mean number of children per node
ρ <+∞

A=2

19 © 2017 Nokia Public
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Definition

B Given the number of children of the root,
the subtrees rooted at these nodes are
independent and have the same
distribution as the initial tree

A=2
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Build the tree
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Queue fluctuation with time
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Building the tree
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Realization
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Why is it a branching process ?
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Definition

• Random tree
• One node at generation 0
• The children of the nodes of generation n
belong to generation n+1

• The number of children of a node is
− random,
− with a probability distribution that

is the same for all nodes,
− independent of the number of

children of other nodes,

• Mean number of children per node
ρ <+∞

A=2
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Why is it a branching process ?

• pk = probability that k customers arrive
pk = during a single service time
pk = probability that a node has k children

• The number of arrivals during a service
time of length t has a Poisson
distribution with mean λt.

• Independence

t

Time

A=2
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Mean number of children per node

• S= service time of a given customer.
S is a random variable with mean 1

µ .

• A= number of customers arrived during
A= the service of this customer

• Given S, A has a Poisson distribution with
mean λS.

S

Time

A=2
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Mean number of children per node

• Mean number of children of a node
E(A) = E(E(A|S))

= E(λS)=λE(S)
= λ

µ .

⇒ ρ = λ
µ = load of the queue,

ρ = λ
µ = mean number of children of

ρ = λ
µ = a node in the tree. A=2
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Recurrence and transcience

• ρ = λ
µ = load of the queue,

ρ = λ
µ = mean number of children per node.

• Branching process result :
− ρ ≤1 : the tree dies out with probability 1.

ρ ≤1 : (assuming that p1 <1 if ρ =1)
− ρ >1 : the tree dies out with probability <1.

• Queueing reformulation :
− ρ ≤1 : (Yn)n∈N is recurrent.
− ρ >1 : (Yn)n∈N is transcient.
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Sketch of proof

• pk = probability that k customers arrive
pk = during a single service time
pk = probability that a node has k children

• P= probability that the queue empties
P= probability that the tree is finite

• P satisfies the fixed-point equation

P=
+∞∑
k=0

Pkpk.

N2 =2

34 © 2017 Nokia Public
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Sketch of proof

• P satisfies the fixed-point equation
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P=ϕ(P),

where

ϕ(x)=
+∞∑
k=0

xkpk

is the generating function of (pk)k∈N

N2 =2

35 © 2017 Nokia Public



Sketch of proof

• P satisfies the fixed-point equation

P=
+∞∑
k=0

Pkpk

• P satisfies the fixed-point equation

P=ϕ(P),

where

ϕ(x)=
+∞∑
k=0

xkpk

is the generating function of (pk)k∈N

N2 =2

35 © 2017 Nokia Public



Sketch of proof
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xkpk

ϕ′(x)=
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kxk−1pk
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ρ =1.4

y=ϕ(x)
y= x
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Sketch of proof

• P is the smallest solution in [0,1]
of the fixed-point equation

P=ϕ(P),

where

ϕ(x)=
+∞∑
k=0

xkpk

is the generating function of (pk)k∈N
N2 =2
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Sketch of proof

• Pn = probability that the population
Pn = is extincted at generation n

• P= lim
n→+∞Pn

• (Pn)n∈N satisfies

Pn+1 =
+∞∑
k=0

Pnkpk, that is, Pn+1 =ϕ(Pn)

• P0 =0

N2 =2
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Sketch of proof

• P is a solution of the fixed-point equation

P=ϕ(P)

• It is also the limit of the sequence (Pn)n∈N
defined recursively by P0 =0 and

Pn+1 =ϕ(Pn) , ∀n ∈N.

N2 =2
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Sketch of proof
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Sketch of proof
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Recurrence and transcience

• ρ = λ
µ = load of the queue,

ρ = λ
µ = mean number of children per node.

• Branching process result :
− ρ ≤1 : the tree dies out with probability 1.

ρ ≤1 : (assuming that p1 <1 if ρ =1)
− ρ >1 : the tree dies out with probability <1.

• Queueing reformulation :
− ρ ≤1 : (Yn)n∈N is recurrent.
− ρ >1 : (Yn)n∈N is transcient.
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Positive recurrence

• What we have shown so far :
− ρ ≤1 : (Yn)n∈N is recurrent.
− ρ >1 : (Yn)n∈N is transcient.

• Branching process result :
− ρ <1 : the mean population size is finite,
− ρ =1 : the mean population size is infinite.

• Queueing reformulation :
− ρ <1 : (Yn)n∈N is positive recurrent,
− ρ =1 : (Yn)n∈N is null recurrent.
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Mean population size

• N= total population size

• Mean population size

E(N) =1+
+∞∑
k=0

kE(N)×pk

=1+
(+∞∑
k=0

kpk

)
×E(N)

• Mean number of children per node
+∞∑
k=0

kpk = ρ

• We obtain E(N)=1+ρE(N)

N2 =2N=6
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Mean population size

• We obtain E(N)=1+ρE(N)

• If ρ >1, then E(N)>1+E(N)> E(N)
→ E(N)=+∞

• If ρ =1, then E(N)=1+E(N)
→ E(N)=+∞

• What if ρ <1? We can’t conclude !
→ If E(N)<+∞, then E(N)= 1

1−ρ
→ Study the population size

generation by generation

N2 =2N=6
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Mean number of nodes per generation

• Nk = number of nodes at generation k

• For each k≥1,

E(Nk) = E(E(Nk|Nk−1))
= E(ρNk−1)
= ρE(Nk−1)

• E(N0)=1

• By induction, E(Nk)= ρk

N1 =2

N2 =2

N3 =1
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Mean population size

• By induction, E(Nk)= ρk

• Population size : N=
+∞∑
k=0

Nk

• Mean population size

E(N)= E

(+∞∑
k=0

Nk

)
=

+∞∑
k=0

E(Nk)=
+∞∑
k=0

ρk

Hence,

E(N)=
{
+∞ if ρ ≥1
1

1−ρ if ρ <1

N2 =2
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Length of a busy period

• B= time length of the busy period

• Mean length of the busy period

E(B) = 1
µ
+

+∞∑
k=0

kE(B)×pk

= 1
µ
+

(+∞∑
k=0

kpk

)
×E(B)

= 1
µ
+ρE(B)

By the same reasonning, we obtain

E(B)=
{
+∞ if ρ ≥1
1
µ

1
1−ρ if ρ <1

N2 =2
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Related work

• M/G/1 queue with LCFS service discipline
• GI/M/1 queue
• Pooling systems
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