Analyzing the M/G/1 Queue with a Branching Process

Céline Comte Nokia Bell Labs France - Télécom ParisTech

Reading Group "Network Theory" December 18, 2017 M/G/1 queue

Branching process

Stability Recurrence and transcience Positive recurrence

Related work and references

M/G/1 queue

Branching process

Stability Recurrence and transcience Positive recurrence

Related work and references

The M/G/1 queue with FCFS service discipline

$$\lambda \longrightarrow \mu \longrightarrow$$

M The arrival process is Poisson

 \rightarrow Arrival rate 0 < λ < + ∞

- G The service times are i.i.d. with a general distribution
 - \rightarrow Mean service time $0 < \frac{1}{\mu} < +\infty$
- 1 A single server
- ? Infinite queue length

FCFS Customers leave in their arrival order

• Exponentially distributed inter-arrival times

- Exponentially distributed inter-arrival times
- The number of arrivals during a time interval of length t has a Poisson distribution with mean *λ*t.

- Exponentially distributed inter-arrival times
- The number of arrivals during a time interval of length t has a Poisson distribution with mean *λ*t.

- Exponentially distributed inter-arrival times
- The number of arrivals during a time interval of length t has a Poisson distribution with mean λt .
- The numbers of arrivals during two disjoint intervals are independent.

- Exponentially distributed inter-arrival times
- The number of arrivals during a time interval of length t has a Poisson distribution with mean *λ*t.
- The numbers of arrivals during two disjoint intervals are independent.

The M/G/1 queue with FCFS service discipline

$$\lambda \longrightarrow \mu \longrightarrow$$

M The arrival process is Poisson

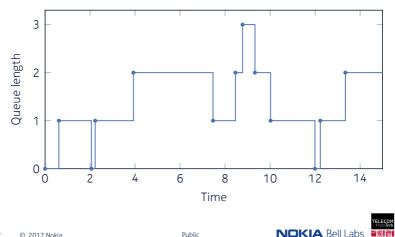
 \rightarrow Arrival rate 0 < λ < + ∞

- G The service times are i.i.d. with a general distribution
 - \rightarrow Mean service time $0 < \frac{1}{\mu} < +\infty$
- 1 A single server
- ? Infinite queue length

FCFS Customers leave in their arrival order

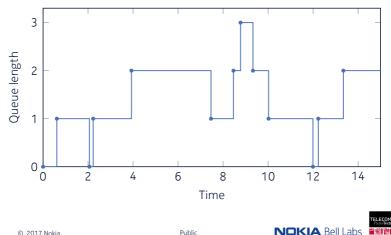
Queue state

- X_t = number of customers in the queue at time t
- $(X_t)_{t>0}$ is not a Markov process (in general)



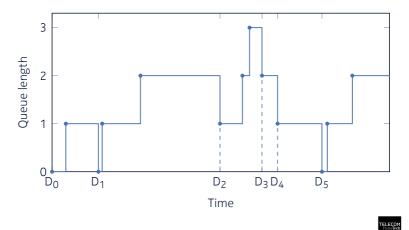
Departure time D_n

- D_n = departure time of the n-th customer
- D_n is a regeneration point of $(X_t)_{t>0}$

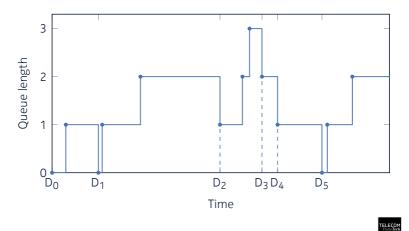


Departure time D_n

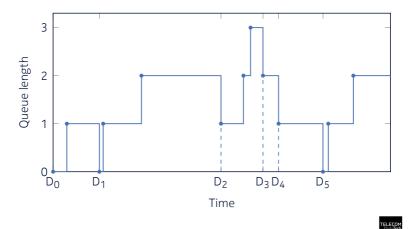
- D_n = departure time of the n-th customer
- D_n is a regeneration point of $(X_t)_{t\geq 0}$



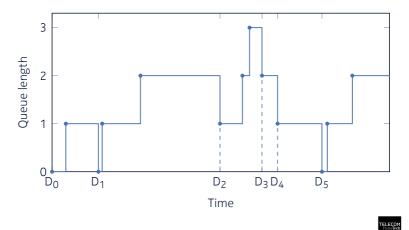
- $Y_n = X_{D_n}$ number of customers left behind customer n
- $(Y_n)_{n\in\mathbb{N}}$ is a Markov chain



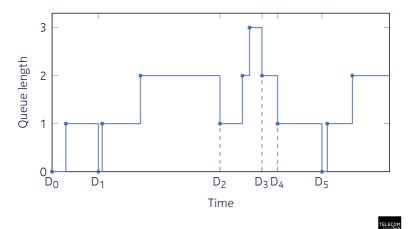
- Because of the FCFS assumption, Y_n = number of customers that arrived since customer n entered the queue



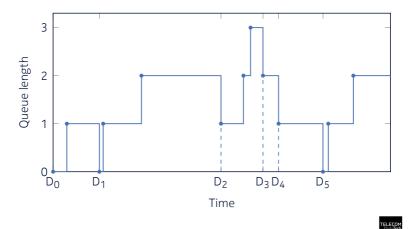
• Because of the FCFS assumption, $Y_n - Y_{n-1} + 1 =$ number of customers that arrived between the departures of customers n – 1 and n



- Because of the FCFS assumption, $Y_n - Y_{n-1} + 1 =$ number of customers that arrived during the service of customer n



- Because of the FCFS assumption, $Y_n - (Y_{n-1} - 1)_+ =$ number of customers that arrived during the service of customer n



 p_k = probabily that k customers arrive during the service time of a customer

0 1 2 3 ...

- p_k = probabily that k customers arrive during the service time of a customer
- The number of arrivals during a service time of length t has a Poisson distribution with mean λt.

- p_k = probabily that k customers arrive during the service time of a customer
- The number of arrivals during a service time of length t has a Poisson distribution with mean λt .
- Letting F denote the CDF of the service time distribution,

$$p_k = \int_0^{+\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} dF(t).$$

- p_k = probabily that k customers arrive during the service time of a customer
- The number of arrivals during a service time of length t has a Poisson distribution with mean λt .
- Letting F denote the CDF of the service time distribution,

$$p_k = \int_0^{+\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} dF(t).$$

• Independence

- p_k = probabily that k customers arrive during the service time of a customer
- The number of arrivals during a service time of length t has a Poisson distribution with mean λt .
- Letting F denote the CDF of the service time distribution,

$$p_k = \int_0^{+\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} dF(t).$$

• Independence



- p_k = probabily that k customers arrive during the service time of a customer
- The number of arrivals during a service time of length t has a Poisson distribution with mean λt .
- Letting F denote the CDF of the service time distribution,

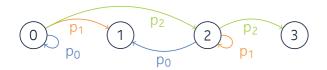
$$p_k = \int_0^{+\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} dF(t).$$

• Independence

- p_k = probabily that k customers arrive during the service time of a customer
- Transition matrix :

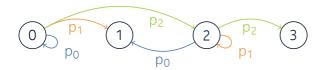
$$\begin{pmatrix} p_0 & p_1 & p_2 & p_3 & \dots & p_k & \dots & \\ p_0 & p_1 & p_2 & p_3 & \dots & p_k & \dots & \\ & p_0 & p_1 & p_2 & \dots & p_k & \dots & \\ & & p_0 & p_1 & \dots & p_k & \dots & \\ & & & p_0 & \dots & & p_k & \dots \end{pmatrix}$$

Properties of $(Y_n)_{n \in \mathbb{N}}$



- Irreducible
 - → All the states of $(Y_n)_{n \in \mathbb{N}}$ have the same nature (positive recurrent, null recurrent or transcient)
 - $\rightarrow\,$ We just need to know the nature of state 0

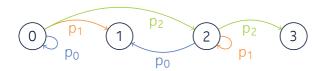
Properties of $(Y_n)_{n \in \mathbb{N}}$



- Irreducible
 - → All the states of $(Y_n)_{n \in \mathbb{N}}$ have the same nature (positive recurrent, null recurrent or transcient)
 - $\rightarrow\,$ We just need to know the nature of state 0
- Aperiodic

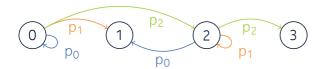
 $\rightarrow \mbox{ If } (Y_n)_{n \in \mathbb{N}}$ is positive recurrent, then it is also ergodic

Stability of $(Y_n)_{n \in \mathbb{N}}$



- State 0 is recurrent
 - ⇔ If the queue starts empty, then with probability 1 it empties out an infinite number of times
 - ⇔ If the queue starts empty, then with probability 1 it eventually empties out

Stability of $(Y_n)_{n \in \mathbb{N}}$

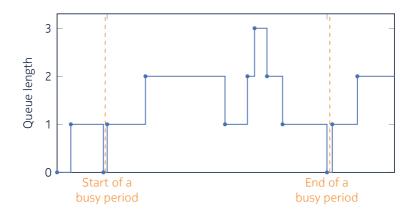


Assume that state 0 is recurrent.

- State 0 is positive recurrent
 - ⇔ If the queue starts empty, then the mean time until it empties out again is finite
- State 0 is null recurrent
 - ⇔ If the queue starts empty, then the mean time until it empties out again is infinite

Busy period

• We just need to look at one busy period of the queue.



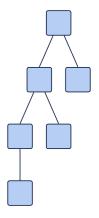
M/G/1 queue

Branching process

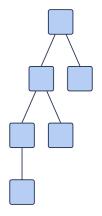
Stability Recurrence and transcience Positive recurrence

Related work and references

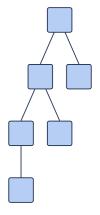
• Random tree



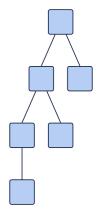
- Random tree
- One node at generation 0



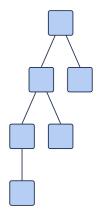
- Random tree
- One node at generation 0
- The children of the nodes of generation n belong to generation n + 1



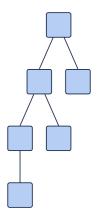
- Random tree
- One node at generation 0
- The children of the nodes of generation n belong to generation n + 1
- The number of children of a node is



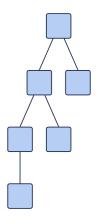
- Random tree
- One node at generation 0
- The children of the nodes of generation n belong to generation n + 1
- The number of children of a node is
 - random,



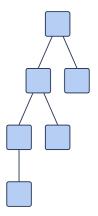
- Random tree
- One node at generation 0
- The children of the nodes of generation n belong to generation n + 1
- The number of children of a node is
 - random,
 - with a probability distribution that is the same for all nodes,



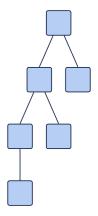
- Random tree
- One node at generation 0
- The children of the nodes of generation n belong to generation n + 1
- The number of children of a node is
 - random,
 - with a probability distribution that is the same for all nodes,
 - independent of the number of children of other nodes,



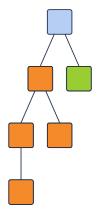
- Random tree
- One node at generation 0
- The children of the nodes of generation n belong to generation n + 1
- The number of children of a node is
 - random,
 - with a probability distribution that is the same for all nodes,
 - independent of the number of children of other nodes,
- Mean number of children per node $ho < +\infty$

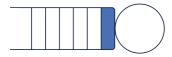


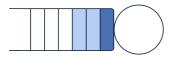
▲ Given the number of children of the root, the subtrees rooted at these nodes are independent and have the same distribution as the initial tree

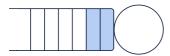


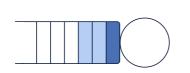
▲ Given the number of children of the root, the subtrees rooted at these nodes are independent and have the same distribution as the initial tree

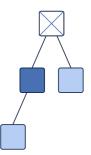


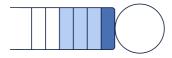


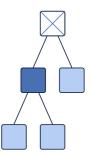


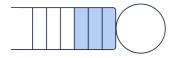


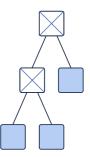


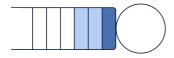


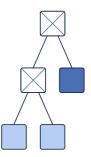


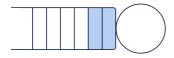


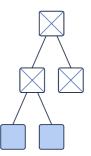


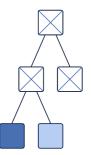


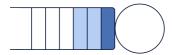


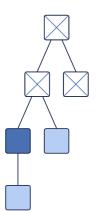


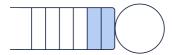


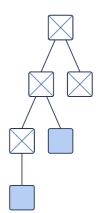


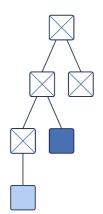


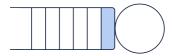


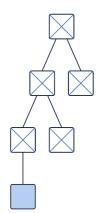


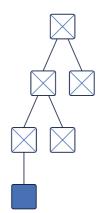


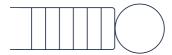


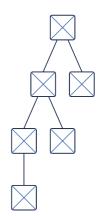




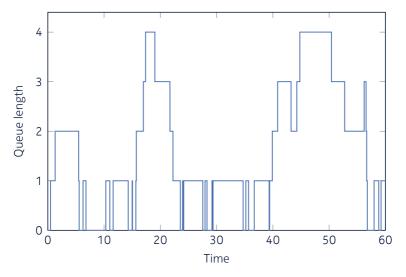




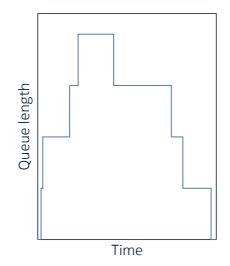


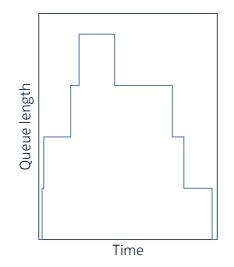


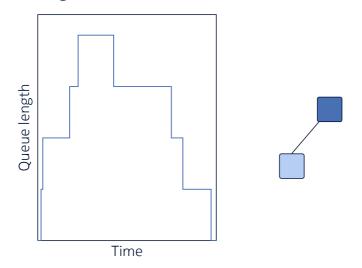
Queue fluctuation with time



NOKIA Bell Labs

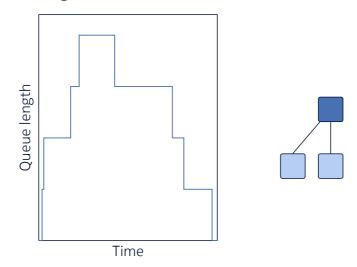


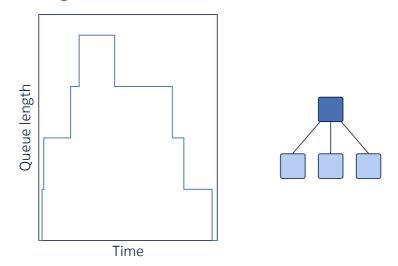


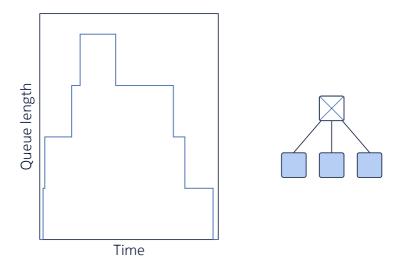


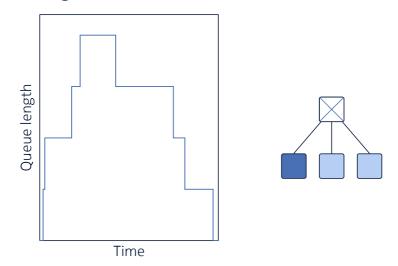
NOKIA Bell Labs

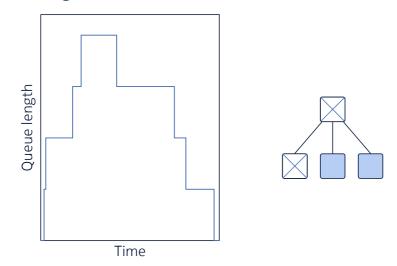
-8m

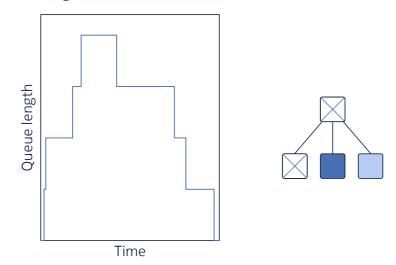


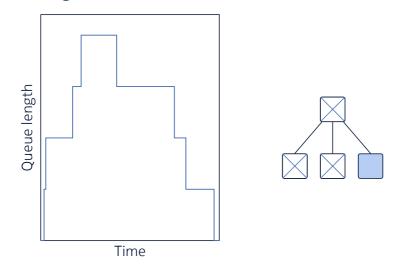


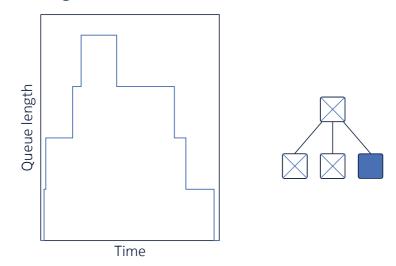


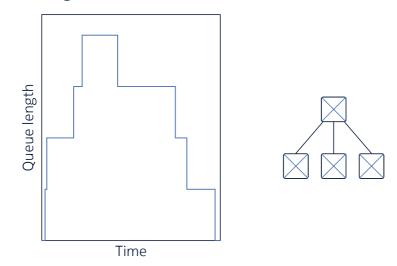




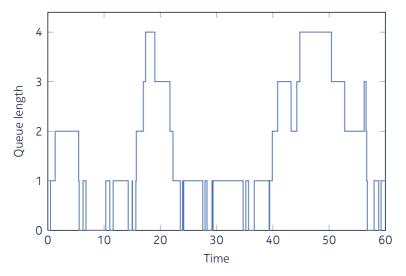






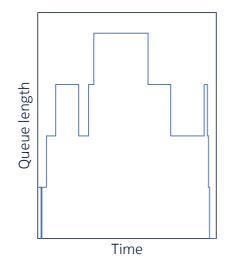


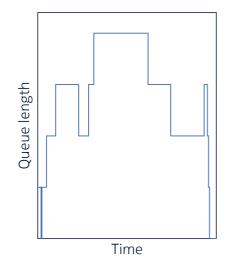
Realization

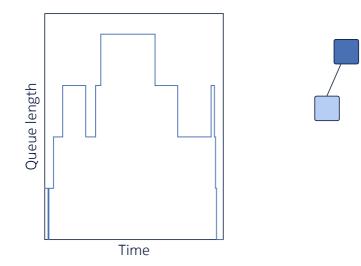


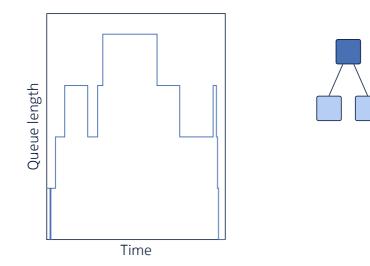
NOKIA Bell Labs

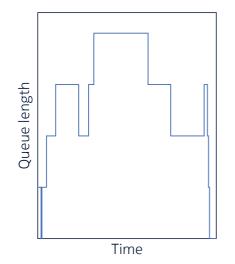
198日間

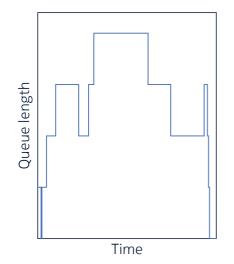


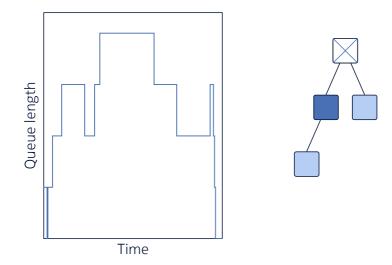


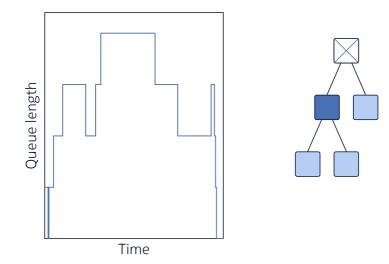


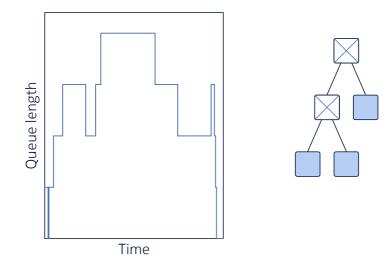


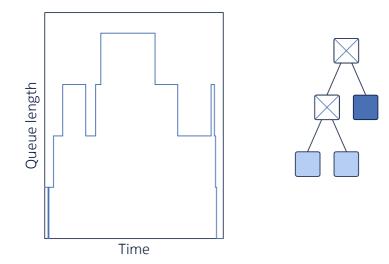


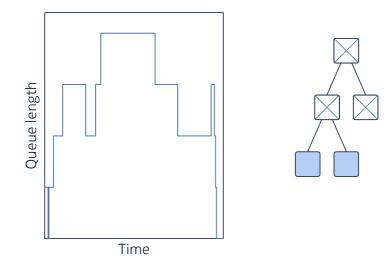


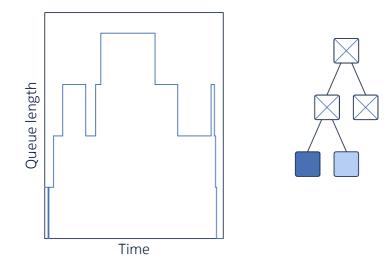


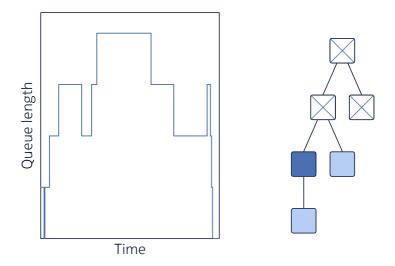






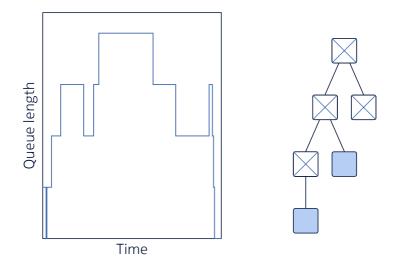


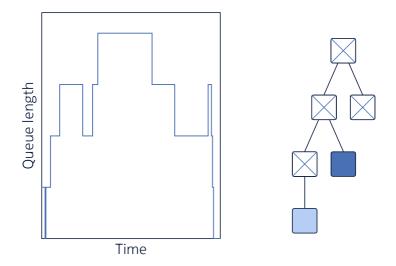




NOKIA Bell Labs

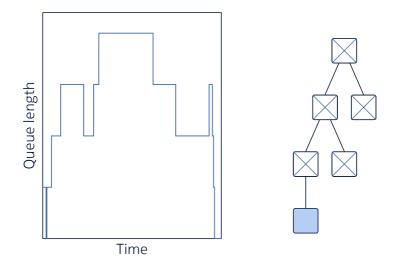
-8m

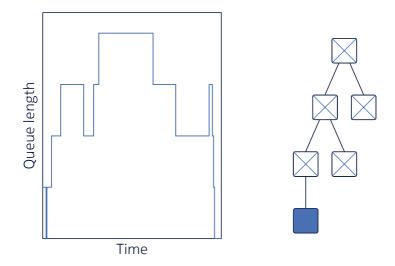


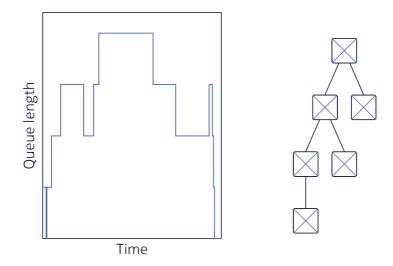


NOKIA Bell Labs

198日間

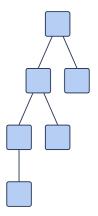




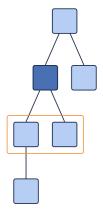


Definition

- Random tree
- One node at generation 0
- The children of the nodes of generation n belong to generation n + 1
- The number of children of a node is
 - random,
 - with a probability distribution that is the same for all nodes,
 - independent of the number of children of other nodes,
- Mean number of children per node $ho < +\infty$

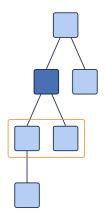


- p_k = probability that k customers arrive during a single service time
 - = probability that a node has k children



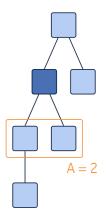
- p_k = probability that k customers arrive during a single service time
 - = probability that a node has k children
- The number of arrivals during a service time of length t has a Poisson distribution with mean λt.

- p_k = probability that k customers arrive during a single service time
 - = probability that a node has k children
- The number of arrivals during a service time of length t has a Poisson distribution with mean λt.
- Independence



Mean number of children per node

- S = service time of a given customer. S is a random variable with mean $\frac{1}{n}$.
- A = number of customers arrived during the service of this customer
- Given S, A has a Poisson distribution with mean λ S.

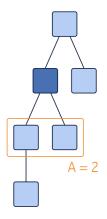


Mean number of children per node

Mean number of children of a node

$$\begin{split} \mathbb{E}(\mathsf{A}) &= \mathbb{E}(\mathbb{E}(\mathsf{A}|\mathsf{S})) \\ &= \mathbb{E}(\lambda\mathsf{S}) = \lambda\mathbb{E}(\mathsf{S}) \\ &= \frac{\lambda}{\mu}. \end{split}$$

⇒ $\rho = \frac{\lambda}{\mu} = \text{load of the queue,}$ = mean number of children of a node in the tree.



M/G/1 queue

Branching process

Stability Recurrence and transcience Positive recurrence

Related work and references

M/G/1 queue

Branching process

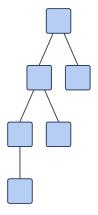
Stability Recurrence and transcience Positive recurrence

Related work and references

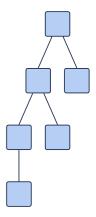
Recurrence and transcience

- $\rho = \frac{\lambda}{\mu} =$ load of the queue,
 - = mean number of children per node.
- Branching process result :
 - $\rho \leq 1$: the tree dies out with probability 1.
 - (assuming that $p_1 < 1$ if $\rho = 1$)
 - $\rho > 1$: the tree dies out with probability < 1.
- Queueing reformulation :
 - $ρ ≤ 1 : (Y_n)_{n ∈ ℕ}$ is recurrent.
 - ρ > 1 : (Y_n)_{n∈ℕ} is transcient.

 p_k = probability that k customers arrive during a single service time
 = probability that a node has k children

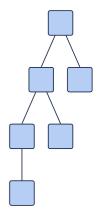


- p_k = probability that k customers arrive during a single service time
 = probability that a node has k children
- P = probability that the queue empties
 = probability that the tree is finite



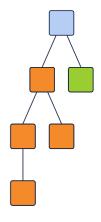
- p_k = probability that k customers arrive during a single service time
 = probability that a node has k children
- P = probability that the queue empties
 = probability that the tree is finite
- P satisfies the fixed-point equation

$$\mathsf{P} = \sum_{k=0}^{+\infty} \mathsf{P}^k \mathsf{p}_k.$$

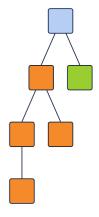


- p_k = probability that k customers arrive during a single service time
 = probability that a node has k children
- P = probability that the queue empties
 = probability that the tree is finite
- P satisfies the fixed-point equation

$$\mathsf{P} = \sum_{k=0}^{+\infty} \mathsf{P}^k \mathsf{p}_k.$$



• P satisfies the fixed-point equation



• P satisfies the fixed-point equation

$$\mathsf{P} = \sum_{k=0}^{+\infty} \mathsf{P}^k \mathsf{p}_k$$

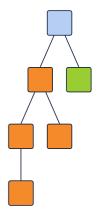
• P satisfies the fixed-point equation

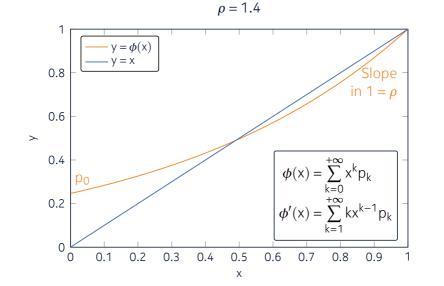
$$\mathsf{P} = \phi(\mathsf{P}),$$

where

$$\phi(\mathbf{x}) = \sum_{k=0}^{+\infty} \mathbf{x}^k \mathbf{p}_k$$

is the generating function of $(p_k)_{k\in\mathbb{N}}$





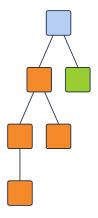
• P is **the smallest solution in** [0,1] of the fixed-point equation

$$\mathsf{P} = \boldsymbol{\phi}(\mathsf{P}),$$

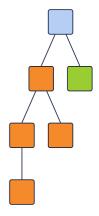
where

$$\phi(\mathbf{x}) = \sum_{k=0}^{+\infty} \mathbf{x}^k \mathbf{p}_k$$

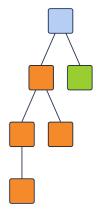
is the generating function of $(p_k)_{k\in\mathbb{N}}$



 P_n = probability that the population is extincted at generation n

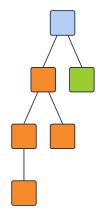


- P_n = probability that the population is extincted at generation n
- $P = \lim_{n \to +\infty} P_n$



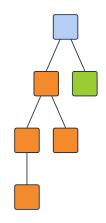
- P_n = probability that the population is extincted at generation n
- $P = \lim_{n \to +\infty} P_n$

 $\mathbb{P}(\text{the population is finite})$



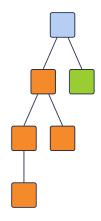
 P_n = probability that the population is extincted at generation n

•
$$\begin{split} \mathbf{P} &= \lim_{n \to +\infty} P_n \\ & \mathbb{P}(\text{the population is finite}) \\ & = \mathbb{P} \begin{pmatrix} +\infty \\ U \\ n=0 \end{pmatrix} \begin{cases} \text{the population is extincted} \\ \text{at generation n} \end{cases} \end{split}$$

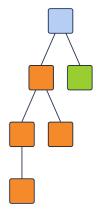


 P_n = probability that the population is extincted at generation n

•
$$\begin{split} \mathbf{P} &= \lim_{n \to +\infty} P_n \\ & \mathbb{P}(\text{the population is finite}) \\ & = \mathbb{P} \begin{pmatrix} +\infty \\ U \\ n=0 \end{pmatrix} \begin{cases} \text{the population is extincted} \\ \text{at generation n} \end{cases} \end{pmatrix} \\ & = \lim_{n \to +\infty} \mathbb{P} \begin{pmatrix} \text{population is extincted} \\ \text{at generation n} \end{pmatrix} \end{split}$$

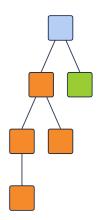


- P_n = probability that the population is extincted at generation n
- $P = \lim_{n \to +\infty} P_n$



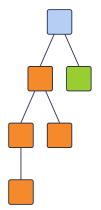
- P_n = probability that the population is extincted at generation n
- $P = \lim_{n \to +\infty} P_n$
- $(P_n)_{n\in\mathbb{N}}$ satisfies

$$P_{n+1} = \sum_{k=0}^{+\infty} P_n^k p_k$$
, that is, $P_{n+1} = \phi(P_n)$



- P_n = probability that the population is extincted at generation n
- $P = \lim_{n \to +\infty} P_n$
- $(P_n)_{n\in\mathbb{N}}$ satisfies

$$P_{n+1} = \sum_{k=0}^{+\infty} P_n^k p_k$$
, that is, $P_{n+1} = \phi(P_n)$



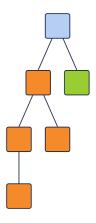
• $P_0 = 0$

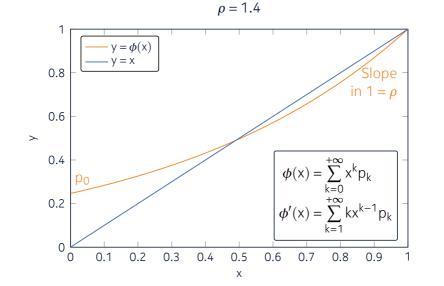
• P is a solution of the fixed-point equation

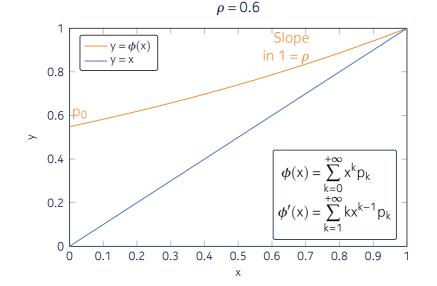
 $\mathsf{P} = \phi(\mathsf{P})$

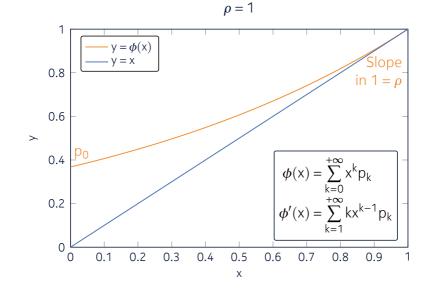
• It is also the limit of the sequence $(P_n)_{n \in \mathbb{N}}$ defined recursively by $P_0 = 0$ and

$$P_{n+1} = \phi(P_n), \quad \forall n \in \mathbb{N}.$$









Recurrence and transcience

- $\rho = \frac{\lambda}{\mu} =$ load of the queue,
 - = mean number of children per node.
- Branching process result :
 - $\rho \leq 1$: the tree dies out with probability 1.
 - (assuming that $p_1 < 1$ if $\rho = 1$)
 - $\rho > 1$: the tree dies out with probability < 1.
- Queueing reformulation :
 - $ρ ≤ 1 : (Y_n)_{n ∈ ℕ}$ is recurrent.
 - ρ > 1 : (Y_n)_{n∈ℕ} is transcient.

M/G/1 queue

Branching process

Stability Recurrence and transcience Positive recurrence

Related work and references

Positive recurrence

- What we have shown so far :
 - $ρ ≤ 1 : (Y_n)_{n ∈ ℕ}$ is recurrent.
 - ρ > 1 : (Y_n)_{n∈ℕ} is transcient.

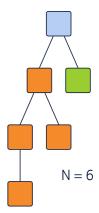
Positive recurrence

- What we have shown so far :
 - $ρ ≤ 1 : (Y_n)_{n ∈ ℕ}$ is recurrent.
 - ρ > 1 : (Y_n)_{n∈ℕ} is transcient.
- Branching process result :
 - ρ < 1 : the mean population size is finite,
 - $\rho = 1$: the mean population size is infinite.

Positive recurrence

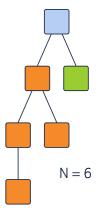
- What we have shown so far :
 - $ρ ≤ 1 : (Y_n)_{n ∈ ℕ}$ is recurrent.
 - ρ > 1 : (Y_n)_{n∈ℕ} is transcient.
- Branching process result :
 - ρ < 1 : the mean population size is finite,
 - ρ = 1 : the mean population size is infinite.
- Queueing reformulation :
 - ρ < 1 : (Y_n)_{n∈ℕ} is **positive** recurrent,
 - $ρ = 1 : (Y_n)_{n ∈ \mathbb{N}}$ is **null** recurrent.

• N = total population size



- N = total population size
- Mean population size

$$\begin{split} \mathbb{E}(\mathsf{N}) &= 1 + \sum_{k=0}^{+\infty} k \mathbb{E}(\mathsf{N}) \times \mathsf{p}_k \\ &= 1 + \left(\sum_{k=0}^{+\infty} k \mathsf{p}_k\right) \times \mathbb{E}(\mathsf{N}) \end{split}$$

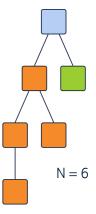


- N = total population size
- Mean population size

$$\begin{split} \mathbb{E}(\mathsf{N}) &= 1 + \sum_{k=0}^{+\infty} k \mathbb{E}(\mathsf{N}) \times \mathsf{p}_k \\ &= 1 + \left(\sum_{k=0}^{+\infty} k \mathsf{p}_k\right) \times \mathbb{E}(\mathsf{N}) \end{split}$$

• Mean number of children per node

$$\sum_{k=0}^{+\infty} k p_k = \rho$$



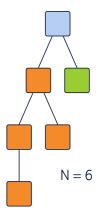
- N = total population size
- Mean population size

$$\begin{split} \mathbb{E}(\mathsf{N}) &= 1 + \sum_{k=0}^{+\infty} k \mathbb{E}(\mathsf{N}) \times \mathsf{p}_k \\ &= 1 + \left(\sum_{k=0}^{+\infty} k \mathsf{p}_k\right) \times \mathbb{E}(\mathsf{N}) \end{split}$$

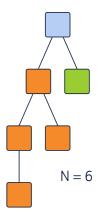
• Mean number of children per node

$$\sum_{k=0}^{+\infty} k p_k = \rho$$

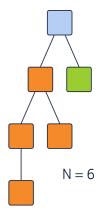
• We obtain $\mathbb{E}(\mathbb{N}) = 1 + \rho \mathbb{E}(\mathbb{N})$



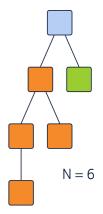
• We obtain $\mathbb{E}(\mathbb{N}) = 1 + \rho \mathbb{E}(\mathbb{N})$



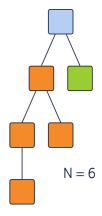
- We obtain $\mathbb{E}(\mathbb{N}) = 1 + \rho \mathbb{E}(\mathbb{N})$
- If $\rho > 1$, then $\mathbb{E}(\mathbb{N}) > 1 + \mathbb{E}(\mathbb{N}) > \mathbb{E}(\mathbb{N})$ $\rightarrow \mathbb{E}(\mathbb{N}) = +\infty$



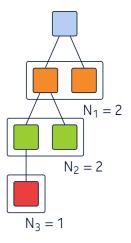
- We obtain $\mathbb{E}(\mathbb{N}) = 1 + \rho \mathbb{E}(\mathbb{N})$
- If $\rho > 1$, then $\mathbb{E}(\mathbb{N}) > 1 + \mathbb{E}(\mathbb{N}) > \mathbb{E}(\mathbb{N})$ $\rightarrow \mathbb{E}(\mathbb{N}) = +\infty$
- If $\rho = 1$, then $\mathbb{E}(\mathbb{N}) = 1 + \mathbb{E}(\mathbb{N})$ $\rightarrow \mathbb{E}(\mathbb{N}) = +\infty$



- We obtain $\mathbb{E}(\mathbb{N}) = 1 + \rho \mathbb{E}(\mathbb{N})$
- If $\rho > 1$, then $\mathbb{E}(\mathbb{N}) > 1 + \mathbb{E}(\mathbb{N}) > \mathbb{E}(\mathbb{N})$ $\rightarrow \mathbb{E}(\mathbb{N}) = +\infty$
- If $\rho = 1$, then $\mathbb{E}(\mathbb{N}) = 1 + \mathbb{E}(\mathbb{N})$ $\rightarrow \mathbb{E}(\mathbb{N}) = +\infty$
- What if $\rho < 1$? We can't conclude!
 - \rightarrow If $\mathbb{E}(\mathbb{N}) < +\infty$, then $\mathbb{E}(\mathbb{N}) = \frac{1}{1-\rho}$
 - → Study the population size generation by generation

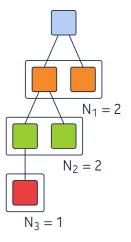


• N_k = number of nodes at generation k



- N_k = number of nodes at generation k
- For each $k \ge 1$,

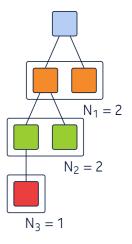
$$\begin{split} \mathbb{E}(\mathsf{N}_k) &= \mathbb{E}(\mathbb{E}(\mathsf{N}_k | \mathsf{N}_{k-1})) \\ &= \mathbb{E}(\rho \mathsf{N}_{k-1}) \\ &= \rho \mathbb{E}(\mathsf{N}_{k-1}) \end{split}$$



- N_k = number of nodes at generation k
- For each $k \ge 1$,

$$\mathbb{E}(N_k) = \mathbb{E}(\mathbb{E}(N_k | N_{k-1}))$$
$$= \mathbb{E}(\rho N_{k-1})$$
$$= \rho \mathbb{E}(N_{k-1})$$

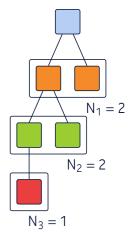
• 𝔼(N₀) = 1



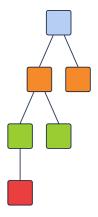
- N_k = number of nodes at generation k
- For each $k \ge 1$,

$$\mathbb{E}(\mathsf{N}_k) = \mathbb{E}(\mathbb{E}(\mathsf{N}_k | \mathsf{N}_{k-1}))$$
$$= \mathbb{E}(\rho \mathsf{N}_{k-1})$$
$$= \rho \mathbb{E}(\mathsf{N}_{k-1})$$

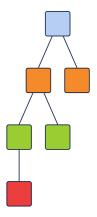
- $\mathbb{E}(N_0) = 1$
- By induction, $\mathbb{E}(N_k) = \rho^k$



• By induction, $\mathbb{E}(N_k) = \rho^k$

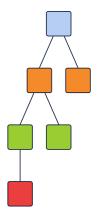


- By induction, $\mathbb{E}(N_k) = \rho^k$
- Population size : $N = \sum_{k=0}^{+\infty} N_k$



- By induction, $\mathbb{E}(N_k) = \rho^k$
- Population size : $N = \sum_{k=0}^{+\infty} N_k$
- Mean population size

$$\mathbb{E}(\mathsf{N}) = \mathbb{E}\left(\sum_{k=0}^{+\infty}\mathsf{N}_k\right) = \sum_{k=0}^{+\infty}\mathbb{E}(\mathsf{N}_k) = \sum_{k=0}^{+\infty}\rho^k$$

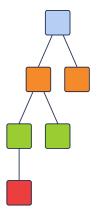


- By induction, $\mathbb{E}(N_k) = \rho^k$
- Population size : $N = \sum_{k=0}^{+\infty} N_k$
- Mean population size

$$\mathbb{E}(\mathsf{N}) = \mathbb{E}\left(\sum_{k=0}^{+\infty}\mathsf{N}_k\right) = \sum_{k=0}^{+\infty}\mathbb{E}(\mathsf{N}_k) = \sum_{k=0}^{+\infty}\rho^k$$

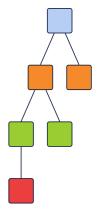
Hence,

$$\mathbb{E}(\mathsf{N}) = \begin{cases} +\infty & \text{if } \rho \ge 1 \\ \frac{1}{1-\rho} & \text{if } \rho < 1 \end{cases}$$



Length of a busy period

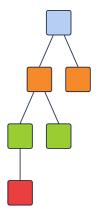
• B = time length of the busy period



Length of a busy period

- B = time length of the busy period
- Mean length of the busy period

$$E(B) = \frac{1}{\mu} + \sum_{k=0}^{+\infty} k \mathbb{E}(B) \times p_k$$
$$= \frac{1}{\mu} + \left(\sum_{k=0}^{+\infty} k p_k\right) \times \mathbb{E}(B)$$
$$= \frac{1}{\mu} + \rho \mathbb{E}(B)$$



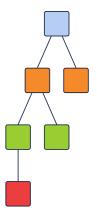
Length of a busy period

- B = time length of the busy period
- Mean length of the busy period

$$E(B) = \frac{1}{\mu} + \sum_{k=0}^{+\infty} k \mathbb{E}(B) \times p_k$$
$$= \frac{1}{\mu} + \left(\sum_{k=0}^{+\infty} k p_k\right) \times \mathbb{E}(B)$$
$$= \frac{1}{\mu} + \rho \mathbb{E}(B)$$

By the same reasonning, we obtain

$$\mathbb{E}(\mathsf{B}) = \begin{cases} +\infty & \text{if } \rho \ge 1 \\ \frac{1}{\mu} \frac{1}{1-\rho} & \text{if } \rho < 1 \end{cases}$$



Length of a busy period $\mu = 1$ 10 1 8 6 Time 4 2 0 0.2 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 Load ρ

M/G/1 queue

Branching process

Stability Recurrence and transcience Positive recurrence

Related work and references

Related work

- M/G/1 queue with LCFS service discipline
- GI/M/1 queue
- Pooling systems

Bibliography

David G. Kendall (1951). "Some Problems in the Theory of Queues". In : Journal of the Royal Statistical Society. Series B (Methodological) 13.2, p. 151–185. David G. Kendall (1953). "Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain". In : The Annals of Mathematical Statistics 24.3, p. 338–354. Pierre Brémaud (2013). Markov Chains : Gibbs Fields, Monte Carlo Simulation, and Queues. Texts in Applied Mathematics. Springer New York. Berestycki Nathanaël (2014). Applied Probability - Part II. Course. University of Cambridge. Yoram Clapper (2017). Branching Processes in Queuing Theory. Bachelor's thesis mathematics. University of Amsterdam.

