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Position of the problem

Example: Voting
I Most of times, my action has no impact at all!
I If the population is fixed and other players act deterministically, then generally,

any possible action is a best response for me (because it does not matter!).
I This is a difficulty to define equilibria.

If there is uncertainty on the population of players:
I There is always a small probability that a pivotal situation arises, where my action

matters.
I I can choose my action based on these very unlikely events.

Poisson games is just a possible model to introduce population uncertainty (but it
offers important practical advantages for mathematical tractability).

Introduction 2/40



Overview

Principle:
1. Each player believes that the other players will use some strategy.
2. She compute the (unlikely) events where her action makes a difference.
3. She choose her strategy as a best response to this analysis.

Equilibria are defined as fixed points of this process.
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Our running example: an election in Approval voting

Approval voting:
I Each voter votes for (= approves of) any number of candidates.
I The score of a candidate is the number of votes she receives.
I The candidate with highest score is declared the winner.
I In case of tie, the winner is chosen uniformly at random among the candidates

with highest score.
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Drawing the population of voters (= players)

I Expected number of voters: n.
I Actual number of voters: N ∼ P(n) (Poisson distribution with mean n).

P[N = k] = e−n nk

k!
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Drawing the types of the voters

Each voter’s type is independently drawn.

Type t t1 t2 t3

Preference ranking
α β γ
β α α
γ γ β

Type distribution r(t) 0.1 0.6 0.3
Actual number of voters N(t) ∼ P(0.1n) ∼ P(0.6n) ∼ P(0.3n)

I Random variables N(t) are independent.
I Types also have utilities (not written in the above table). For example,

ut1(α) > ut1(β) > ut1(γ).
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Choosing ballots (= actions)

For example, consider this strategy function:


σ(α | t1) = 1
σ(αβ | t2) = 1
σ(γ | t3) = 1

.

I σ is generally not given. The issue will precisely be to find a σ that yields an
equilibrium.

Then we have:

Ballot c α αβ γ

Ballot distribution τ(c) 0.1 0.6 0.3
Actual number of ballots X (c) ∼ P(0.1n) ∼ P(0.6n) ∼ P(0.3n)

I Random variables X (c) are independent.
I What happens if σ(αβ | t1) = 1 instead?
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Computing scores

Scores:

Candidate κ α β γ

Score distribution ρ(κ) 0.7 0.6 0.3
Actual score S(κ) ∼ P(0.7n) ∼ P(0.6n) ∼ P(0.3n)

I Are random variables S(κ) independent?
I The winner is candidate α.
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Advantages of the Poisson model

Common public information = Environmental equivalence
From the point of view of any voter, the number of other voters follows P(n), the
number of other voters with type t follows P(nr(t)), etc. Hence all voters live in the
same environment, which is the same as seen by an external observer.

Independence of actions
The number X (c) of voters who choose a given ballot is independent from the number
of voters who choose another ballot.
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Large Poisson games

We consider a sequence of Poisson games, parametrized by the expected number of
players n.
Limit properties when n→∞?
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Direct probability calculation: Ex. 1
Event Bn: there is no ballot γ.

P[X ∈ Bn] = P[X (γ) = 0] = e−nτ(γ)
(
nτ(γ)

)0
0! = e−nτ(γ)

The magnitude of B = (Bn)n∈N is defined as the coefficient in the exponent:

µ(B) = lim
n→∞

1
n logP[X ∈ Bn] = −τ(γ)

I A magnitude is always ≤ 0.
I When n→∞, it is unlikely that there is no ballot γ: e−0.3n.
I But it is infinitely less likely that there is no ballot αβ: e−0.6n.
I Similarly, it is infinitely more likely that there is no ballot α: e−0.1n.
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Direct probability calculation: Ex. 2
Event Bn: there are just as many ballots αβ as γ.

P[X ∈ Bn] =
∞∑

k=0
P[X (αβ) = k and X (γ) = k]

=
∞∑

k=0
P[X (αβ) = k] · P[X (γ) = k]

= e−n(τ(αβ)+τ(γ))
∞∑

k=0

(
n2τ(αβ)τ(γ)

)k

(k!)2

= e−n(τ(αβ)+τ(γ))I0
(
2n
√
τ(αβ)τ(γ)

)
= exp

(
−n
(
τ(αβ) + τ(γ)

)
+ 2n

√
τ(αβ)τ(γ) + o(n)

)
µ(B) = −τ(αβ)− τ(γ) + 2

√
τ(αβ)τ(γ) = −

(√
τ(αβ)−

√
τ(γ)

)2
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Magnitude of a sequence of points

bn sequence of points. For each kind of ballot c, it specifies how many ballots bn(c).

µ(b) = lim
n→∞

1
n logP[X = bn]

= lim
n→∞

1
n log

∏
c∈C

P[X (c) = bn(c)]

= lim
n→∞

1
n
∑
c∈C

log
(

e−nτn(c)
(
nτn(c)

)bn(c)

bn(c)!

)

= lim
n→∞

∑
c∈C

τn(c)
(

bn(c)
nτn(c)

(
1− log bn(c)

nτn(c)

)
− 1
)
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Offset
Hence we have:

µ(b) = lim
n→∞

∑
c∈C

τn(c)ψ
(

bn(c)
nτn(c)

)
,

where ψ(x) = x(1− log x)− 1 and ψ(0) = −1.

We define the offset of ballot c in this sequence of points bn as:

φc = lim
n→∞

bn(c)
nτn(c)

.

It is the limit ratio between the number of actual ballots c in this particular sequence
of points and what would be expected in general.
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Magnitude Theorem

Let (Bn) be a sequence of outcomes whose magnitude is defined. Then:

µ(B) = lim
n→∞

1
n logP[X ∈ Bn]

= lim
n→∞

max
bn∈Bn

1
n logP[X = bn]

I.e. if bn is defined as the most probable point in Bn, then µ(B) = µ(b). In practice:

µ(B) = lim
n→∞

max
bn∈Bn

∑
c∈C

τn(c)ψ
(

bn(c)
nτn(c)

)
N.B.: We define the offset of ballot c in B as its offset in b. [In fact, this offset is the
same in any sequence of points extracted from (Bn) that has the same magnitude.]
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Magnitude Theorem: Ex. 1

Bn: there is no ballot γ.
Any point bn ∈ Bn is of the form: X (α) = k,X (αβ) = k ′,X (γ) = 0.

µ(B) = lim
n→∞

max
bn∈Bn

∑
c∈C

τn(c)ψ
(

bn(c)
nτn(c)

)
= lim

n→∞
max

k,k′∈N
τ(α)ψ

(
k

nτ(α)

)
︸ ︷︷ ︸

limmax=0

+ τ(αβ)ψ

(
k ′

nτ(αβ)

)
︸ ︷︷ ︸

limmax=0

+ τ(γ)ψ

(
0

nτ(γ)

)
︸ ︷︷ ︸

=−1

= −τ(γ)

Moreover: φα = φαβ = 1 and φγ = 0.
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Magnitude Theorem: Ex. 2
Bn: there are just as many ballots αβ as γ.

µ(B) = lim
n→∞

max
bn∈Bn

∑
c∈C

τn(c)ψ
(

bn(c)
nτn(c)

)
= lim

n→∞
max

k,k′∈N
τ(α)ψ

(
k

τ(α)n

)
︸ ︷︷ ︸

limmax=0

+ τ(αβ)ψ

(
k ′

τ(αβ)n

)
+ τ(γ)ψ

(
k ′

τ(γ)n

)

= lim
n→∞

max
k′∈N

τ(αβ)ψ

(
k ′

τ(αβ)n

)
+ τ(γ)ψ

(
k ′

τ(γ)n

)
= max

x≥0
τ(αβ)ψ

(
x

τ(αβ)

)
+ τ(γ)ψ

(
x

τ(γ)

)
= −

(√
τ(αβ)−

√
τ(γ)

)2
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Magnitude Theorem: Ex. 2 (continued)

And the offsets:
φα = 1 ⇒ bn(α) ∼ 0.1n
φαβ =

√
τ(γ)/τ(αβ) ⇒ bn(αβ) ∼ n

√
τ(αβ)τ(γ) ' 0.42n

φγ =
√
τ(αβ)/τ(γ) ⇒ bn(γ) ∼ n

√
τ(αβ)τ(γ) ' 0.42n

Remark: the total number of voters in bn is not n.
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Myerson 2000: bonus tracks (explained with the hands)
Offset theorem
Assume you have studied (Bn)n∈N, e.g., Bn : X (αβ) = X (γ).
Consider a “finite translation”, e.g. B′n : X (αβ) = X (γ) + 1.
The offset theorem gives a easy way to compute:

lim
n→∞

P(B′n)
P(Bn)

.

[In particular, B and B′ have the same magnitude.]

Hyperplane theorem
Quite technical, but the main consequence is:
For events whose probability does not tend to 0, you can approximate by a normal
distribution: X (c) ∼ N (nτ(c),

√
nτ(c)).
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DMT
Let B be an outcome defined by a finite set of linear inequalities:

a1(c)X (c) + a1(c ′)X (c ′) + . . . ≥ 0
...

aK (c)X (c) + aK (c ′)X (c ′) + . . . ≥ 0

Suppose that λ1, . . . , λK ≥ 0 is an argmin of:

F (λ) =
∑
c∈C

τ(c)

exp
∑

k≤K
λkak(c)

− 1


Then µ(B) = F (λ). Moreover, for any ballot c:

φc = exp

∑
k≤K

λkak(c)
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DMT: Ex. 1

Bn: there is no ballot γ.
Only one constraint:

0X (α) + 0X (αβ)− 1X (γ) ≥ 0.

F (λ) = τ(α)
[
e0λ1 − 1

]
︸ ︷︷ ︸

=0

+ τ(αβ)
[
e0λ1 − 1

]
︸ ︷︷ ︸

=0

+ τ(γ)
[
e−1λ1 − 1

]
︸ ︷︷ ︸
→−1 if λ1→∞

µ(B) = −τ(γ)
φα = e0λ1 = 1
φαβ = e0λ1 = 1
φγ = e−1λ1 = 0
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DMT: Ex. 2
Bn: there are just as many ballots αβ as γ.
Constraints: {

0X (α) + 1X (αβ)− 1X (γ) ≥ 0
0X (α)− 1X (αβ) + 1X (γ) ≥ 0

F (λ) = τ(α)
[
e0λ1+0λ2 − 1

]
︸ ︷︷ ︸

=0

+ τ(αβ)
[
e1λ1−1λ2 − 1

]
+ τ(γ)

[
e−1λ1+1λ2 − 1

]

For eλ1−λ2 =
√
τ(γ)/τ(αβ), we obtain:

µ(B) = 2
√
τ(αβ)τ(γ)− τ(αβ)− τ(γ) = −

(√
τ(αβ)−

√
τ(γ)

)2
And we could deduce the offsets immediately.
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DMT: About the proof

I In Myerson 2002, the proof is very short.
I But it is a bit obscure where the function F (λ) comes from.
I I will try to provide a clue about this!
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Kuhn-Tucker conditions: one constraint
max f (x)
s.t. a1(α)xα + a1(β)xβ ≥ 0

Example:
−xα + xβ ≥ 0

If −→x ∗ is in the interior of the cone:
−→
∇f (−→x ∗) = −→0

If −→x ∗ is on the frontier of the cone:
−→
∇f (−→x ∗) = −λ1−→a1 (with λ1 ≥ 0)

Anyway, the second condition is met.
Moreover, if λ1 > 0, then −→a1 · −→x = 0.

xα−2 −1 0 1 2

xβ

−2

−1

0

1

2

−−→a1

−→x ∗

−→
∇f

−→x ∗
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Kuhn-Tucker conditions: several constraints
max f (x)
s.t. a1(α)xα + a1(β)xβ ≥ 0

a2(α)xα + a2(β)xβ ≥ 0

Example:
−xα + xβ ≥ 0
2xα − 0.25xβ ≥ 0

−→x ∗ interior: −→∇f (−→x ∗) = −→0 .
−→x ∗ on first frontier: −→∇f (−→x ∗) = −λ1−→a1 .
−→x ∗ on second frontier: −→∇f (−→x ∗) = −λ2−→a2 .

If −→x ∗ is on the intersection of frontiers:
−→
∇f (−→x ∗) = −λ1−→a1 − λ2−→a2 (with λk ≥ 0).

In all cases, the above condition is met.
Moreover, if λk > 0, then −→ak · −→x = 0.

xα

xβ

−−→a1

−−→a2

−→x ∗
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Applying Kuhn-Tucker conditions in our case
max f (φ) = τ(α)ψ(φα) + τ(β)ψ(φβ)
s.t. a1(α)τ(α)φα+a1(β)τ(β)φβ ≥ 0

a2(α)τ(α)φα+a2(β)τ(β)φβ ≥ 0

Condition on −→∇f :(
−τ(α) log φα
−τ(β) log φβ

)
= −λ1

(
a1(α)τ(α)
a1(β)τ(β)

)
− λ2

(
a2(α)τ(α)
a2(β)τ(β)

)
φα = eλ1a1(α)+λ2a2(α) (resp. β)

When λk > 0, then the point is on the corresponding frontier. For example:

a1(α)τ(α)eλ1a1(α)+λ2a2(α) + a1(β)τ(β)eλ1a1(β)+λ2a2(β) = 0

∂

∂λ1

[
τ(α)eλ1a1(α)+λ2a2(α) + τ(β)eλ1a1(β)+λ2a2(β)

]
= 0
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∂

∂λ1
F (λ) = 0
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Terminological remarks

I Dual cone: cone generated by the −→a k .
I λk : Lagrange multiplier associated to constraint k.
I F (λ) is the Lagrange function (or Lagrangian) of the original optimization

problem. It plays the role of objective function in the dual problem.
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MET

Rigorous definition of a pivot situation for subset Y of candidates:{
∀κ ∈ Y ,S(κ) ≥ max S − 1
∀κ /∈ Y ,S(κ) ≤ max S − 2

These constraints are not linear!

We have µ[pivot(Y )] = µ(B), where outcome B is defined by:{
∀κ, κ′ ∈ Y : S(κ) = S(κ′)
∀κ ∈ Y , κ′ /∈ Y : S(κ) ≥ S(κ′)

These constraints are linear! Hence we can apply DMT.
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MET example: pivot α vs β

MET: 
S(α) ≥ S(β) : 1X (α) ≥ 0
S(β) ≥ S(α) : −1X (α) ≥ 0
S(α) ≥ S(γ) : 1X (α) + 1X (αβ)− 1X (γ)≥ 0

DMT:

F (λ) = τ(α)
[
e1λ1−1λ2+1λ3 − 1

]
+ τ(αβ)

[
e1λ3 − 1

]
+ τ(γ)

[
e−1λ3 − 1

]
Minimization: λ1 − λ2 → −∞ and λ3 = 0 (we cannot do better because λ3 ≥ 0).
We obtain:

µ[pivot(α, β)] = −τ(α).
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End of the example
µ[pivot(α, β)] = −τ(α) = −0.1
µ[pivot(α, γ)] = −

(√
τ(α) + τ(αβ)−

√
τ(γ)

)2
' −0.08

µ[pivot(β, γ)] = −τ(α)−
(√

τ(αβ)−
√
τ(γ)

)2
' −0.15

⇒ µ[pivot(α, γ)] > µ[pivot(α, β)] > µ[pivot(β, γ)]

Type t t1 t2 t3

Preference ranking
α β γ
β α α
γ γ β

Best response α αβ γ

⇒ It is an equilibrium!
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Large Poisson Games

I Models with variable population generate uncertainty, even if players have
deterministic strategies.

I Players may base their strategy on very unlikely events.
I Poisson games ⇒ environmental equivalence ⇒ easier to handle!
I Large Poisson games ⇒ reason in terms of magnitudes (instead of probabilities).
I Magnitude Theorem, DMT and MET gives practical tools to compute magnitudes.
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Thank you!
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