Large Poisson Games

François Durand
Lamsade - Université Paris-Dauphine
Based on Matías Núñez, "Approval Voting in Large Electorates", in Handbook on Approval Voting, Springer-Verlag, 2010.

Position of the problem

Example: Voting

- Most of times, my action has no impact at all!
- If the population is fixed and other players act deterministically, then generally, any possible action is a best response for me (because it does not matter!).
- This is a difficulty to define equilibria.

If there is uncertainty on the population of players:

- There is always a small probability that a pivotal situation arises, where my action matters.
- I can choose my action based on these very unlikely events.

Poisson games is just a possible model to introduce population uncertainty (but it offers important practical advantages for mathematical tractability).

Overview

Principle:

1. Each player believes that the other players will use some strategy.
2. She compute the (unlikely) events where her action makes a difference.
3. She choose her strategy as a best response to this analysis.

Equilibria are defined as fixed points of this process.

References

- Roger Myerson (2000). Large Poisson games. Journal of Economic Theory, 94, 7-45.
- Proves existence of equilibria
- Magnitude Theorem
- Roger Myerson (2002). Comparison of scoring rules in Poisson voting games. Journal of Economic Theory, 103, 219-251.
- Dual Magnitude Theorem
- Matías Núñez (2010). Condorcet consistency of approval voting: A counter example on large Poisson games. Journal of Theoretical Politics, 22(1), 64-84.
- Magnitude Equivalence Theorem
- Matías Núñez (2010). Approval Voting in Large Electorates, in Handbook on Approval Voting, Springer-Verlag, 2010.
- Reader's digest of all the above (+ alternative models)

Plan

Model

Direct probability calculation
Magnitude Theorem (Myerson, 2000)

Dual Magnitude Theorem (Myerson, 2002)

Magnitude Equivalence Theorem (Núñez 2010)

Conclusion

Plan

Model

Direct probability calculation

Magnitude Theorem (Myerson, 2000)

Dual Magnitude Theorem (Myerson, 2002)

Magnitude Equivalence Theorem (Núñez 2010)

Conclusion

Our running example: an election in Approval voting

Approval voting:

- Each voter votes for (= approves of) any number of candidates.
- The score of a candidate is the number of votes she receives.
- The candidate with highest score is declared the winner.
- In case of tie, the winner is chosen uniformly at random among the candidates with highest score.

Drawing the population of voters ($=$ players)

- Expected number of voters: n.
- Actual number of voters: $N \sim \mathcal{P}(n)$ (Poisson distribution with mean n).

$$
\mathbb{P}[N=k]=e^{-n} \frac{n^{k}}{k!}
$$

Drawing the types of the voters

Each voter's type is independently drawn.

Type t	t_{1}	t_{2}	t_{3}
	α	β	γ
Preference ranking	β	α	α
	γ	γ	β
Type distribution $r(t)$	0.1	0.6	0.3
Actual number of voters $N(t)$	$\sim \mathcal{P}(0.1 n)$	$\sim \mathcal{P}(0.6 n)$	$\sim \mathcal{P}(0.3 n)$

- Random variables $N(t)$ are independent.
- Types also have utilities (not written in the above table). For example, $u_{t_{1}}(\alpha)>u_{t_{1}}(\beta)>u_{t_{1}}(\gamma)$.

Choosing ballots (= actions)

For example, consider this strategy function: $\left\{\begin{array}{l}\sigma\left(\alpha \mid t_{1}\right)=1 \\ \sigma\left(\alpha \beta \mid t_{2}\right)=1 \\ \sigma\left(\gamma \mid t_{3}\right)=1\end{array}\right.$.

- σ is generally not given. The issue will precisely be to find a σ that yields an equilibrium.
Then we have:

Ballot c	α	$\alpha \beta$	γ
Ballot distribution $\tau(c)$	0.1	0.6	0.3
Actual number of ballots $X(c)$	$\sim \mathcal{P}(0.1 n)$	$\sim \mathcal{P}(0.6 n)$	$\sim \mathcal{P}(0.3 n)$

- Random variables $X(c)$ are independent.
- What happens if $\sigma\left(\alpha \beta \mid t_{1}\right)=1$ instead?

Computing scores

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

Scores:

Candidate κ	α	β	γ
Score distribution $\rho(\kappa)$	0.7	0.6	0.3
Actual score $S(\kappa)$	$\sim \mathcal{P}(0.7 n)$	$\sim \mathcal{P}(0.6 n)$	$\sim \mathcal{P}(0.3 n)$

- Are random variables $S(\kappa)$ independent?
- The winner is candidate α.

Advantages of the Poisson model

Common public information $=$ Environmental equivalence
From the point of view of any voter, the number of other voters follows $\mathcal{P}(n)$, the number of other voters with type t follows $\mathcal{P}(\operatorname{nr}(t))$, etc. Hence all voters live in the same environment, which is the same as seen by an external observer.

Independence of actions
The number $X(c)$ of voters who choose a given ballot is independent from the number of voters who choose another ballot.

Large Poisson games

We consider a sequence of Poisson games, parametrized by the expected number of players n.
Limit properties when $n \rightarrow \infty$?

Plan

Model

Direct probability calculation
Magnitude Theorem (Myerson, 2000)

Dual Magnitude Theorem (Myerson, 2002)

Magnitude Equivalence Theorem (Núñez 2010)

Conclusion

Direct probability calculation: Ex. 1

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

Event B_{n} : there is no ballot γ.

$$
\mathbb{P}\left[X \in B_{n}\right]=\mathbb{P}[X(\gamma)=0]=e^{-n \tau(\gamma)} \frac{(n \tau(\gamma))^{0}}{0!}=e^{-n \tau(\gamma)}
$$

The magnitude of $B=\left(B_{n}\right)_{n \in \mathbb{N}}$ is defined as the coefficient in the exponent:

$$
\mu(B)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left[X \in B_{n}\right]=-\tau(\gamma)
$$

- A magnitude is always ≤ 0.
- When $n \rightarrow \infty$, it is unlikely that there is no ballot $\gamma: e^{-0.3 n}$.
- But it is infinitely less likely that there is no ballot $\alpha \beta: e^{-0.6 n}$.
- Similarly, it is infinitely more likely that there is no ballot $\alpha: e^{-0.1 n}$.

Direct probability calculation: Ex. 2

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

Event B_{n} : there are just as many ballots $\alpha \beta$ as γ.

$$
\begin{aligned}
& \mathbb{P}\left[X \in B_{n}\right]=\sum_{k=0}^{\infty} \mathbb{P}[X(\alpha \beta)=k \text { and } X(\gamma)=k] \\
&=\sum_{k=0}^{\infty} \mathbb{P}[X(\alpha \beta)=k] \cdot \mathbb{P}[X(\gamma)=k] \\
&=e^{-n(\tau(\alpha \beta)+\tau(\gamma))} \sum_{k=0}^{\infty} \frac{\left(n^{2} \tau(\alpha \beta) \tau(\gamma)\right)^{k}}{(k!)^{2}} \\
&=e^{-n(\tau(\alpha \beta)+\tau(\gamma))} l_{0}(2 n \sqrt{\tau(\alpha \beta) \tau(\gamma)}) \\
&=\exp (-n(\tau(\alpha \beta)+\tau(\gamma))+2 n \sqrt{\tau(\alpha \beta) \tau(\gamma)}+o(n)) \\
& \mu(B)=-\tau(\alpha \beta)-\tau(\gamma)+2 \sqrt{\tau(\alpha \beta) \tau(\gamma)}=-(\sqrt{\tau(\alpha \beta)}-\sqrt{\tau(\gamma)})^{2}
\end{aligned}
$$

Plan

Model

Direct probability calculation

Magnitude Theorem (Myerson, 2000)
Dual Magnitude Theorem (Myerson, 2002)

Magnitude Equivalence Theorem (Núñez 2010)

Conclusion

Magnitude of a sequence of points

b_{n} sequence of points. For each kind of ballot c, it specifies how many ballots $b_{n}(c)$.

$$
\begin{aligned}
\mu(b) & =\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left[X=b_{n}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \prod_{c \in \mathcal{C}} \mathbb{P}\left[X(c)=b_{n}(c)\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{c \in \mathcal{C}} \log \left(e^{-n \tau_{n}(c)} \frac{\left(n \tau_{n}(c)\right)^{b_{n}(c)}}{b_{n}(c)!}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{c \in \mathcal{C}} \tau_{n}(c)\left(\frac{b_{n}(c)}{n \tau_{n}(c)}\left(1-\log \frac{b_{n}(c)}{n \tau_{n}(c)}\right)-1\right)
\end{aligned}
$$

Offset

Hence we have:

$$
\mu(b)=\lim _{n \rightarrow \infty} \sum_{c \in \mathcal{C}} \tau_{n}(c) \psi\left(\frac{b_{n}(c)}{n \tau_{n}(c)}\right),
$$

where $\psi(x)=x(1-\log x)-1$ and $\psi(0)=-1$.

We define the offset of ballot c in this sequence of points b_{n} as:

$$
\phi_{c}=\lim _{n \rightarrow \infty} \frac{b_{n}(c)}{n \tau_{n}(c)} .
$$

It is the limit ratio between the number of actual ballots c in this particular sequence of points and what would be expected in general.

Magnitude Theorem

Let $\left(B_{n}\right)$ be a sequence of outcomes whose magnitude is defined. Then:

$$
\begin{aligned}
\mu(B) & =\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left[X \in B_{n}\right] \\
& =\lim _{n \rightarrow \infty} \max _{b_{n} \in B_{n}} \frac{1}{n} \log \mathbb{P}\left[X=b_{n}\right]
\end{aligned}
$$

I.e. if b_{n} is defined as the most probable point in B_{n}, then $\mu(B)=\mu(b)$. In practice:

$$
\mu(B)=\lim _{n \rightarrow \infty} \max _{b_{n} \in B_{n}} \sum_{c \in \mathcal{C}} \tau_{n}(c) \psi\left(\frac{b_{n}(c)}{n \tau_{n}(c)}\right)
$$

N.B.: We define the offset of ballot c in B as its offset in b. [In fact, this offset is the same in any sequence of points extracted from $\left(B_{n}\right)$ that has the same magnitude.]

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

B_{n} : there is no ballot γ.
Any point $b_{n} \in B_{n}$ is of the form: $X(\alpha)=k, X(\alpha \beta)=k^{\prime}, X(\gamma)=0$.

$$
\begin{aligned}
\mu(B) & =\lim _{n \rightarrow \infty} \max _{b_{n} \in B_{n}} \sum_{c \in \mathcal{C}} \tau_{n}(c) \psi\left(\frac{b_{n}(c)}{n \tau_{n}(c)}\right) \\
& =\lim _{n \rightarrow \infty} \max _{k, k^{\prime} \in \mathbb{N}} \tau(\alpha) \underbrace{\psi\left(\frac{k}{n \tau(\alpha)}\right)}_{\lim \max =0}+\tau(\alpha \beta) \underbrace{\psi\left(\frac{k^{\prime}}{n \tau(\alpha \beta)}\right)}_{\lim \max =0}+\tau(\gamma) \underbrace{\psi\left(\frac{0}{n \tau(\gamma)}\right)}_{=-1} \\
& =-\tau(\gamma)
\end{aligned}
$$

Moreover: $\phi_{\alpha}=\phi_{\alpha \beta}=1$ and $\phi_{\gamma}=0$.

Magnitude Theorem: Ex. 2

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

B_{n} : there are just as many ballots $\alpha \beta$ as γ.

$$
\begin{aligned}
\mu(B) & =\lim _{n \rightarrow \infty} \max _{b_{n} \in B_{n}} \sum_{c \in \mathcal{C}} \tau_{n}(c) \psi\left(\frac{b_{n}(c)}{n \tau_{n}(c)}\right) \\
& =\lim _{n \rightarrow \infty} \max _{k, k^{\prime} \in \mathbb{N}} \tau(\alpha) \underbrace{\psi\left(\frac{k}{\tau(\alpha) n}\right)}_{\lim \max =0}+\tau(\alpha \beta) \psi\left(\frac{k^{\prime}}{\tau(\alpha \beta) n}\right)+\tau(\gamma) \psi\left(\frac{k^{\prime}}{\tau(\gamma) n}\right) \\
& =\lim _{n \rightarrow \infty} \max _{k^{\prime} \in \mathbb{N}} \tau(\alpha \beta) \psi\left(\frac{k^{\prime}}{\tau(\alpha \beta) n}\right)+\tau(\gamma) \psi\left(\frac{k^{\prime}}{\tau(\gamma) n}\right) \\
& =\max _{x \geq 0} \tau(\alpha \beta) \psi\left(\frac{x}{\tau(\alpha \beta)}\right)+\tau(\gamma) \psi\left(\frac{x}{\tau(\gamma)}\right) \\
& =-(\sqrt{\tau(\alpha \beta)}-\sqrt{\tau(\gamma)})^{2}
\end{aligned}
$$

Magnitude Theorem: Ex. 2 (continued)

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

And the offsets:

$$
\begin{cases}\phi_{\alpha}=1 & \Rightarrow b_{n}(\alpha) \sim 0.1 n \\ \phi_{\alpha \beta}=\sqrt{\tau(\gamma) / \tau(\alpha \beta)} & \Rightarrow b_{n}(\alpha \beta) \sim n \sqrt{\tau(\alpha \beta) \tau(\gamma)} \simeq 0.42 n \\ \phi_{\gamma}=\sqrt{\tau(\alpha \beta) / \tau(\gamma)} & \Rightarrow b_{n}(\gamma) \sim n \sqrt{\tau(\alpha \beta) \tau(\gamma)} \simeq 0.42 n\end{cases}
$$

Remark: the total number of voters in b_{n} is not n.

Myerson 2000: bonus tracks (explained with the hands)

Offset theorem

Assume you have studied $\left(B_{n}\right)_{n \in \mathbb{N}}$, e.g., $B_{n}: X(\alpha \beta)=X(\gamma)$.
Consider a "finite translation", e.g. $B_{n}^{\prime}: X(\alpha \beta)=X(\gamma)+1$.
The offset theorem gives a easy way to compute:

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{P}\left(B_{n}^{\prime}\right)}{\mathbb{P}\left(B_{n}\right)}
$$

[In particular, B and B^{\prime} have the same magnitude.]

Hyperplane theorem

Quite technical, but the main consequence is:
For events whose probability does not tend to $\mathbf{0}$, you can approximate by a normal distribution: $X(c) \sim \mathcal{N}(n \tau(c), \sqrt{n \tau(c)})$.

Plan

Model

Direct probability calculation

Magnitude Theorem (Myerson, 2000)

Dual Magnitude Theorem (Myerson, 2002)

Magnitude Equivalence Theorem (Núñez 2010)

Conclusion

DMT

Let B be an outcome defined by a finite set of linear inequalities:

$$
\left\{\begin{array}{c}
a_{1}(c) X(c)+a_{1}\left(c^{\prime}\right) X\left(c^{\prime}\right)+\ldots \geq 0 \\
\vdots \\
a_{K}(c) X(c)+a_{K}\left(c^{\prime}\right) X\left(c^{\prime}\right)+\ldots \geq 0
\end{array}\right.
$$

Suppose that $\lambda_{1}, \ldots, \lambda_{K} \geq 0$ is an argmin of:

$$
F(\lambda)=\sum_{c \in \mathcal{C}} \tau(c)\left[\exp \left(\sum_{k \leq K} \lambda_{k} a_{k}(c)\right)-1\right]
$$

Then $\mu(B)=F(\lambda)$. Moreover, for any ballot c :

$$
\phi_{c}=\exp \left(\sum_{k \leq K} \lambda_{k} a_{k}(c)\right)
$$

B_{n} : there is no ballot γ.
Only one constraint:

$$
\begin{gathered}
0 X(\alpha)+0 X(\alpha \beta)-1 X(\gamma) \geq 0 . \\
F(\lambda)=\tau(\alpha) \underbrace{\left[e^{0 \lambda_{1}}-1\right]}_{=0}+\tau(\alpha \beta) \underbrace{\left[e^{0 \lambda_{1}}-1\right]}_{=0}+\tau(\gamma) \underbrace{\left[e^{-1 \lambda_{1}}-1\right]}_{\rightarrow-1 \text { if } \lambda_{1} \rightarrow \infty} \\
\mu(B)=-\tau(\gamma) \\
\left\{\begin{array}{l}
\phi_{\alpha}=e^{0 \lambda_{1}}=1 \\
\phi_{\alpha \beta}=e^{0 \lambda_{1}}=1 \\
\phi_{\gamma}=e^{-1 \lambda_{1}}=0
\end{array}\right.
\end{gathered}
$$

DMT: Ex. 2

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

B_{n} : there are just as many ballots $\alpha \beta$ as γ.
Constraints:

$$
\left\{\begin{array}{l}
0 X(\alpha)+1 X(\alpha \beta)-1 X(\gamma) \geq 0 \\
0 X(\alpha)-1 X(\alpha \beta)+1 X(\gamma) \geq 0
\end{array}\right.
$$

$$
F(\lambda)=\tau(\alpha) \underbrace{\left[e^{0 \lambda_{1}+0 \lambda_{2}}-1\right]}_{=0}+\tau(\alpha \beta)\left[e^{1 \lambda_{1}-1 \lambda_{2}}-1\right]+\tau(\gamma)\left[e^{-1 \lambda_{1}+1 \lambda_{2}}-1\right]
$$

For $e^{\lambda_{1}-\lambda_{2}}=\sqrt{\tau(\gamma) / \tau(\alpha \beta)}$, we obtain:

$$
\mu(B)=2 \sqrt{\tau(\alpha \beta) \tau(\gamma)}-\tau(\alpha \beta)-\tau(\gamma)=-(\sqrt{\tau(\alpha \beta)}-\sqrt{\tau(\gamma)})^{2}
$$

And we could deduce the offsets immediately.

DMT: About the proof

- In Myerson 2002, the proof is very short.
- But it is a bit obscure where the function $F(\lambda)$ comes from.
- I will try to provide a clue about this!

Kuhn-Tucker conditions: one constraint

$$
\begin{array}{ll}
\max & f(x) \\
\text { s.t. } & a_{1}(\alpha) x_{\alpha}+a_{1}(\beta) x_{\beta} \geq 0
\end{array}
$$

Example:

$$
-x_{\alpha}+x_{\beta} \geq 0
$$

If \vec{x}^{*} is in the interior of the cone:

$$
\vec{\nabla} f\left(\vec{x}^{*}\right)=\overrightarrow{0}
$$

Kuhn-Tucker conditions: one constraint

$\max f(x)$

s.t. $\quad a_{1}(\alpha) x_{\alpha}+a_{1}(\beta) x_{\beta} \geq 0$

Example:

$-x_{\alpha}+x_{\beta} \geq 0$

If \vec{x}^{*} is in the interior of the cone:

$$
\vec{\nabla} f\left(\vec{x}^{*}\right)=\overrightarrow{0}
$$

If \vec{x}^{*} is on the frontier of the cone:

$$
\vec{\nabla} f\left(\vec{x}^{*}\right)=-\lambda_{1} \overrightarrow{a_{1}} \quad\left(\text { with } \lambda_{1} \geq 0\right)
$$

Kuhn-Tucker conditions: one constraint

$\max f(x)$

s.t. $\quad a_{1}(\alpha) x_{\alpha}+a_{1}(\beta) x_{\beta} \geq 0$

Example:

$$
-x_{\alpha}+x_{\beta} \geq 0
$$

If \vec{x}^{*} is in the interior of the cone:

$$
\vec{\nabla} f\left(\vec{x}^{*}\right)=\overrightarrow{0}
$$

If \vec{x}^{*} is on the frontier of the cone:

$$
\vec{\nabla} f\left(\vec{x}^{*}\right)=-\lambda_{1} \overrightarrow{a_{1}} \quad\left(\text { with } \lambda_{1} \geq 0\right)
$$

Anyway, the second condition is met.
Moreover, if $\lambda_{1}>0$, then $\overrightarrow{a_{1}} \cdot \vec{x}=0$.

Kuhn-Tucker conditions: several constraints

$\max f(x)$

s.t. $\quad a_{1}(\alpha) x_{\alpha}+a_{1}(\beta) x_{\beta} \geq 0$

$$
a_{2}(\alpha) x_{\alpha}+a_{2}(\beta) x_{\beta} \geq 0
$$

\vec{x}^{*} interior: $\vec{\nabla} f\left(\vec{x}^{*}\right)=\overrightarrow{0}$.
\vec{x}^{*} on first frontier: $\vec{\nabla} f\left(\vec{x}^{*}\right)=-\lambda_{1} \overrightarrow{a_{1}}$.
\vec{x}^{*} on second frontier: $\vec{\nabla} f\left(\vec{x}^{*}\right)=-\lambda_{2} \overrightarrow{a_{2}}$.

Example:

$$
\begin{aligned}
-x_{\alpha}+x_{\beta} & \geq 0 \\
2 x_{\alpha}-0.25 x_{\beta} & \geq 0
\end{aligned}
$$

Kuhn-Tucker conditions: several constraints

$\max f(x)$
s.t.

$$
\begin{aligned}
& a_{1}(\alpha) x_{\alpha}+a_{1}(\beta) x_{\beta} \geq 0 \\
& a_{2}(\alpha) x_{\alpha}+a_{2}(\beta) x_{\beta} \geq 0
\end{aligned}
$$

\vec{x}^{*} interior: $\vec{\nabla} f\left(\vec{x}^{*}\right)=\overrightarrow{0}$.
\vec{x}^{*} on first frontier: $\vec{\nabla} f\left(\vec{x}^{*}\right)=-\lambda_{1} \overrightarrow{a_{1}}$.
\vec{x}^{*} on second frontier: $\vec{\nabla} f\left(\vec{x}^{*}\right)=-\lambda_{2} \overrightarrow{a_{2}}$.
If \vec{x}^{*} is on the intersection of frontiers:

$$
\vec{\nabla} f\left(\vec{x}^{*}\right)=-\lambda_{1} \overrightarrow{a_{1}}-\lambda_{2} \overrightarrow{a_{2}} \quad\left(\text { with } \lambda_{k} \geq 0\right)
$$

In all cases, the above condition is met.
Moreover, if $\lambda_{k}>0$, then $\overrightarrow{a_{k}} \cdot \vec{x}=0$.

Example:

$$
\begin{aligned}
-x_{\alpha}+x_{\beta} & \geq 0 \\
2 x_{\alpha}-0.25 x_{\beta} & \geq 0
\end{aligned}
$$

Applying Kuhn-Tucker conditions in our case

$$
\begin{array}{ll}
\max & f(\phi)=\tau(\alpha) \psi\left(\phi_{\alpha}\right)+\tau(\beta) \psi\left(\phi_{\beta}\right) \\
\mathrm{s.t.} & a_{1}(\alpha) \tau(\alpha) \phi_{\alpha}+a_{1}(\beta) \tau(\beta) \phi_{\beta} \geq 0 \\
& a_{2}(\alpha) \tau(\alpha) \phi_{\alpha}+a_{2}(\beta) \tau(\beta) \phi_{\beta} \geq 0
\end{array}
$$

Condition on $\vec{\nabla} f$:

$$
\begin{aligned}
\binom{-\tau(\alpha) \log \phi_{\alpha}}{-\tau(\beta) \log \phi_{\beta}} & =-\lambda_{1}\binom{a_{1}(\alpha) \tau(\alpha)}{a_{1}(\beta) \tau(\beta)}-\lambda_{2}\binom{a_{2}(\alpha) \tau(\alpha)}{a_{2}(\beta) \tau(\beta)} \\
\phi_{\alpha} & \left.=e^{\lambda_{1} a_{1}(\alpha)+\lambda_{2} a_{2}(\alpha)} \quad \text { (resp. } \beta\right)
\end{aligned}
$$

When $\lambda_{k}>0$, then the point is on the corresponding frontier. For example:

$$
\begin{gathered}
a_{1}(\alpha) \tau(\alpha) e^{\lambda_{1} a_{1}(\alpha)+\lambda_{2} a_{2}(\alpha)}+a_{1}(\beta) \tau(\beta) e^{\lambda_{1} a_{1}(\beta)+\lambda_{2} a_{2}(\beta)}=0 \\
\frac{\partial}{\partial \lambda_{1}}\left[\tau(\alpha) e^{\lambda_{1} a_{1}(\alpha)+\lambda_{2} a_{2}(\alpha)}+\tau(\beta) e^{\lambda_{1} a_{1}(\beta)+\lambda_{2} a_{2}(\beta)}\right]=0
\end{gathered}
$$

Applying Kuhn-Tucker conditions in our case

$$
\begin{array}{ll}
\max & f(\phi)=\tau(\alpha) \psi\left(\phi_{\alpha}\right)+\tau(\beta) \psi\left(\phi_{\beta}\right) \\
\text { s.t. } & a_{1}(\alpha) \tau(\alpha) \phi_{\alpha}+a_{1}(\beta) \tau(\beta) \phi_{\beta} \geq 0 \\
& a_{2}(\alpha) \tau(\alpha) \phi_{\alpha}+a_{2}(\beta) \tau(\beta) \phi_{\beta} \geq 0
\end{array}
$$

Condition on $\vec{\nabla} f$:

$$
\begin{aligned}
\binom{-\tau(\alpha) \log \phi_{\alpha}}{-\tau(\beta) \log \phi_{\beta}} & =-\lambda_{1}\binom{a_{1}(\alpha) \tau(\alpha)}{a_{1}(\beta) \tau(\beta)}-\lambda_{2}\binom{a_{2}(\alpha) \tau(\alpha)}{a_{2}(\beta) \tau(\beta)} \\
\phi_{\alpha} & \left.=e^{\lambda_{1} a_{1}(\alpha)+\lambda_{2} a_{2}(\alpha)} \quad \text { (resp. } \beta\right)
\end{aligned}
$$

When $\lambda_{k}>0$, then the point is on the corresponding frontier. For example:

$$
\begin{gathered}
a_{1}(\alpha) \tau(\alpha) e^{\lambda_{1} a_{1}(\alpha)+\lambda_{2} a_{2}(\alpha)}+a_{1}(\beta) \tau(\beta) e^{\lambda_{1} a_{1}(\beta)+\lambda_{2} a_{2}(\beta)}=0 \\
\frac{\partial}{\partial \lambda_{1}} F(\lambda)=0
\end{gathered}
$$

Terminological remarks

- Dual cone: cone generated by the \vec{a}_{k}.
- λ_{k} : Lagrange multiplier associated to constraint k.
- $F(\lambda)$ is the Lagrange function (or Lagrangian) of the original optimization problem. It plays the role of objective function in the dual problem.

Plan

Model

Direct probability calculation

Magnitude Theorem (Myerson, 2000)

Dual Magnitude Theorem (Myerson, 2002)

Magnitude Equivalence Theorem (Núñez 2010)

Conclusion

Rigorous definition of a pivot situation for subset Y of candidates:

$$
\left\{\begin{array}{l}
\forall \kappa \in Y, S(\kappa) \geq \max S-1 \\
\forall \kappa \notin Y, S(\kappa) \leq \max S-2
\end{array}\right.
$$

These constraints are not linear!
We have $\mu[\operatorname{pivot}(Y)]=\mu(B)$, where outcome B is defined by:

$$
\begin{cases}\forall \kappa, \kappa^{\prime} \in Y: & S(\kappa)=S\left(\kappa^{\prime}\right) \\ \forall \kappa \in Y, \kappa^{\prime} \notin Y: & S(\kappa) \geq S\left(\kappa^{\prime}\right)\end{cases}
$$

These constraints are linear! Hence we can apply DMT.

MET example: pivot α vs β

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

MET:

$$
\left\{\begin{array}{lrl}
S(\alpha) \geq S(\beta): & 1 X(\alpha) & \geq 0 \\
S(\beta) \geq S(\alpha): & -1 X(\alpha) & \geq 0 \\
S(\alpha) \geq S(\gamma): & 1 X(\alpha)+1 X(\alpha \beta)-1 X(\gamma) \geq 0
\end{array}\right.
$$

DMT:

$$
F(\lambda)=\tau(\alpha)\left[e^{1 \lambda_{1}-1 \lambda_{2}+1 \lambda_{3}}-1\right]+\tau(\alpha \beta)\left[e^{1 \lambda_{3}}-1\right]+\tau(\gamma)\left[e^{-1 \lambda_{3}}-1\right]
$$

Minimization: $\lambda_{1}-\lambda_{2} \rightarrow-\infty$ and $\lambda_{3}=0$ (we cannot do better because $\lambda_{3} \geq 0$).
We obtain:

$$
\mu[\operatorname{pivot}(\alpha, \beta)]=-\tau(\alpha)
$$

End of the example

Ballot c	α	$\alpha \beta$	γ
$\tau(c)$	0.1	0.6	0.3

$$
\left\{\begin{array}{l}
\mu[\operatorname{pivot}(\alpha, \beta)]=-\tau(\alpha)=-0.1 \\
\mu[\operatorname{pivot}(\alpha, \gamma)]=-(\sqrt{\tau(\alpha)+\tau(\alpha \beta)}-\sqrt{\tau(\gamma)})^{2} \simeq-0.08 \\
\mu[\operatorname{pivot}(\beta, \gamma)]=-\tau(\alpha)-(\sqrt{\tau(\alpha \beta)}-\sqrt{\tau(\gamma)})^{2} \simeq-0.15 \\
\quad \Rightarrow \mu[\operatorname{pivot}(\alpha, \gamma)]>\mu[\operatorname{pivot}(\alpha, \beta)]>\mu[\operatorname{pivot}(\beta, \gamma)]
\end{array}\right.
$$

Type t	t_{1}	t_{2}	t_{3}
Preference ranking	α	β	γ
	β	α	α
	γ	γ	β
Best response	α	$\alpha \beta$	γ

\Rightarrow It is an equilibrium!

Plan

```
Model
Direct probability calculation
Magnitude Theorem (Myerson, 2000)
Dual Magnitude Theorem (Myerson, 2002)
Magnitude Equivalence Theorem (Núñez 2010)
```

Conclusion

Large Poisson Games

- Models with variable population generate uncertainty, even if players have deterministic strategies.
- Players may base their strategy on very unlikely events.
- Poisson games \Rightarrow environmental equivalence \Rightarrow easier to handle!
- Large Poisson games \Rightarrow reason in terms of magnitudes (instead of probabilities).
- Magnitude Theorem, DMT and MET gives practical tools to compute magnitudes.

Thank you!

