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Position of the problem

Example: Voting
» Most of times, my action has no impact at all!
> If the population is fixed and other players act deterministically, then generally,
any possible action is a best response for me (because it does not matter!).
» This is a difficulty to define equilibria.
If there is uncertainty on the population of players:
> There is always a small probability that a pivotal situation arises, where my action
matters.
> | can choose my action based on these very unlikely events.

Poisson games is just a possible model to introduce population uncertainty (but it
offers important practical advantages for mathematical tractability).
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Overview

Principle:

1. Each player believes that the other players will use some strategy.

2. She compute the (unlikely) events where her action makes a difference.

3. She choose her strategy as a best response to this analysis.

Equilibria are defined as fixed points of this process.
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Our running example: an election in Approval voting

Approval voting:

v

Each voter votes for (= approves of) any number of candidates.

The score of a candidate is the number of votes she receives.

v

v

The candidate with highest score is declared the winner.

In case of tie, the winner is chosen uniformly at random among the candidates
with highest score.

v
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Drawing the population of voters (= players)

» Expected number of voters: n.
» Actual number of voters: N ~ P(n) (Poisson distribution with mean n).
k

]P)[N:k]:e_ F
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Drawing the types of the voters

Each voter's type is independently drawn.

Type t t t ts

o 8 gl
Preference ranking I3 Q@ Q@

gl gl B
Type distribution r(t) 0.1 0.6 0.3
Actual number of voters N(t) | ~ P(0.1n) | ~ P(0.6n) | ~ P(0.3n)

» Random variables N(t) are independent.
» Types also have utilities (not written in the above table). For example,
utl(a) > utl(ﬁ) > utl(’Y)'

>
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Choosing ballots (= actions)

ola|t)=1
For example, consider this strategy function: olaf | ) =
o(y|ts) =
> o is generally not given. The issue will precisely be to find a ¢ that yields an
equilibrium.
Then we have:
Ballot ¢ Q@ af ~y
Ballot distribution 7(c¢) 0.1 0.6 0.3
Actual number of ballots X(c) | ~ P(0.1n) | ~ P(0.6n) | ~ P(0.3n)

» Random variables X(c) are independent.
» What happens if o(af | t1) = 1 instead?
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Ballotc | a | aB | v
Computing scores () 101]06]03
Scores:
Candidate & o B vy
Score distribution p(x) 0.7 0.6 0.3
Actual score S(k) ~ P(0.7n) | ~P(0.6n) | ~ P(0.3n)

> Are random variables S(x) independent?

» The winner is candidate «.
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Advantages of the Poisson model

Common public information = Environmental equivalence

From the point of view of any voter, the number of other voters follows P(n), the
number of other voters with type t follows P(nr(t)), etc. Hence all voters live in the
same environment, which is the same as seen by an external observer.

Independence of actions

The number X(c) of voters who choose a given ballot is independent from the number
of voters who choose another ballot.
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Large Poisson games

We consider a sequence of Poisson games, parametrized by the expected number of
players n.
Limit properties when n — co?
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Direct probability calculation

DAUPHINE Direct probability calculation 14/40

UNIVERSITE PARIS



Ballotc | a | aB | v
Direct probability calculation: Ex. 1 () [01]06]03
Event B,: there is no ballot ~.
0
n
P[X € B, =P[X(y) =0] = e_"T(v)g( T(()]Y)) = e ()
The magnitude of B = (B,)nen is defined as the coefficient in the exponent:
B) =i L logP[X € B,| =
u(B) = lim —logP[X & By] = —7(7)
> A magnitude is always < 0.
» When n — oo, it is unlikely that there is no ballot ~: =037,
» But it is infinitely less likely that there is no ballot a3: e=%:".
» Similarly, it is infinitely more likely that there is no ballot a: e=017.
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Ballot ¢ | «

of

0.6

0.3

Direct probability calculation: Ex. 2 7(c) |01

Event Bj: there are just as many ballots a3 as ~.

PIX € B)] = > P[X(aB) = k and X(7) = K]
k=0

= P[X(aB) = K| - P[X(y) = K]

k=0

k
_ enlrlas)r 7))2 ”T(O‘ﬁ (1)

_ (T(a5)+T(7))/O (2n T(aﬂ)T(,y))
— exp (—n(T(a5)+T( )) +2n T(@B)T(fy)—l—o(n))
u(B) = ~7(a8) — 7(3) + 2v/7(@B)(7) = — (v/r(aB) — ()’
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Magnitude Theorem (Myerson, 2000)
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Magnitude of a sequence of points

b, sequence of points. For each kind of ballot ¢, it specifies how many ballots b,(c).

pu(b) = lim E IogIP’[X = by

n—oo

= lim flogHIP’[X ) = bn(c)]

n—o0
ceC

Nty bnle)
= Sl ( ol b(n()c))! )

ceC

=i e (2 (1 ) 1)

ceC
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Offset

Hence we have:

where 1(x) = x(1 — log x) — 1 and ¥(0) = —1. 0 05 1 15 2 25 3
We define the offset of ballot ¢ in this sequence of points b, as:

oo = lim 20l9)

n—o0 nTp(c)’

It is the limit ratio between the number of actual ballots ¢ in this particular sequence
of points and what would be expected in general.

O
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Magnitude Theorem
Let (B,) be a sequence of outcomes whose magnitude is defined. Then:
.1
u(B) = I|m - Iog]P’[X € By
= li ,| PX=0b
00 2%, o8 FIX = b

l.e. if by is defined as the most probable point in B,, then u(B) = p(b). In practice:

u(B) = fim, max ZT” <"Tn(c))>

N.B.: We define the offset of ballot ¢ in B as its offset in b. [In fact, this offset is the
same in any sequence of points extracted from (B,) that has the same magnitude.]
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Ballotc | a | aB | v
Magnitude Theorem: Ex. 1 () [01]06]03
B, there is no ballot ~.
Any point b, € By, is of the form: X(a) = k, X(a8) = k', X(y) = 0.
H(B) = fim g 2 7ol ( 3)
ceC
= Jim max () () tr(ad)e () a2
T oo kken nt(o) A nt(af) e nt(7)
l =0 l =0 =1

=—7(7)
Moreover: ¢, = ¢o3 =1 and ¢, = 0.
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Magnitude Theorem: Ex. 2

B, there are just as many ballots a3 as 7.

u(B) = lim max ZTn(C)1/1< )

n—00 byEB, ntp(c)

= lim max T(a)¢(

k
n—+00 k,k'€N T(a)n
—_————

lim max=0

n—oo k’'eN

= lim max r(a8)o () e ()

(B
= max T(ap)y <r(2ﬁ)) +r()Y (TE<7))
- (V7B - )|
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Magnitude Theorem: Ex. 2 (continued)

And the offsets:

o =1 = by(a) ~0.1n
bap = VT(1)/7(B) = ba(aB) ~ ny/7(aB)T(v
¢, =V1(aB)/T(v) = ba(7) ~ ny/T(aB)T(7) ~

Remark: the total number of voters in b, is not n.
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Ballotc | a | aB | v
7(c) 0.1/06 |03
~ 0.42n
0.42n
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Myerson 2000: bonus tracks (explained with the hands)

Offset theorem

Assume you have studied (B)nen, €.g., By : X(afB) = X(7).
Consider a “finite translation”, e.g. Bl : X(af) = X(v) + 1.
The offset theorem gives a easy way to compute:

im E(Bn)
n00 P(By)

[In particular, B and B’ have the same magnitude.]

Hyperplane theorem

Quite technical, but the main consequence is:
For events whose probability does not tend to 0, you can approximate by a normal

distribution: X(c) ~ N (n7(c), /n7(c)).
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Dual Magnitude Theorem (Myerson, 2002)
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DMT

Let B be an outcome defined by a finite set of linear inequalities:

ai(c)X(c)+ a1(c)X(c')+...>0

ak(c)X(c) + ak(c)X()+...>0
Suppose that Aq,...,Ax > 0 is an argmin of:

FO) =Y 7(c) |exp | D Ma(c) | —1

ceC k<K

Then u(B) = F(X). Moreover, for any ballot c:

e = exp Z Akak(c)

K_\ k<K
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DMT: Ex. 1

B, there is no ballot ~.
Only one constraint:

0X(a) +0X(af) —1X(y) >0

FON) = () [ = 1] + r(a) [e™ = 1] +7(7) [e > ~ 1]
i o

=0 =0
w(B) = —7(v)
by = =1
¢a5 = eO)\l =1
(;57 —e =0
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Ballotc | a | aB | v
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Ballot ¢

of

DMT: Ex. 2 7(c)

0.1

0.6

0.3

B,: there are just as many ballots af as 7.

Constraints:
{ 0X(a) + 1X(aB) — 1X() =
>

0
0X(a) — 1X(aB) + 1X(y) >0

F(\) =7(a) [eo>q+0>\2 — 1} + 7(af) [eul*1A2 — 1} +7(7) [efl’\1+1)‘2 — 1]

—_——
=0

For M=% = /7(v)/7(af), we obtain:

u(B) = 2,/7(@B)r(3) — (aB) — () = — (V/7(aB) ~ V7))

And we could deduce the offsets immediately.
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DMT: About the proof

> In Myerson 2002, the proof is very short.

» But it is a bit obscure where the function F(\) comes from.

> | will try to provide a clue about this!
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Kuhn-Tucker conditions: one constraint

max  f(x) Example:
st.  ai(a)xq +a1(B)xg >0 —Xo +x3 >0

If X* is in the interior of the cone:

VERY =0
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Kuhn-Tucker conditions: one constraint

max  f(x) Example:
st.  ai(a)xq +a1(B)xg >0 —Xa +x3 >0

If X* is in the interior of the cone:
VAR =T
If X* is on the frontier of the cone:

VA(R*) = M3 (with Ay > 0)
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Kuhn-Tucker conditions: one constraint

max f(x) Example:
st.  ai(a)xq +a1(B)xg >0 —Xo +x3 >0

If X* is in the interior of the cone:
VAR =10

If X¥* is on the frontier of the cone:

VA(R*) = M3 (with Ay > 0)

Anyway, the second condition is met.
Moreover, if A1 > 0, then a_l> X =0.

DU PH INE Dual Magnitude Theorem (Myerson, 2002) 30/40
UNIVERSITE PARIS



Kuhn-Tucker conditions: several constraints

max  f(x) Example:
st. ai(a)xy +a(B)xg >0 —Xa+  x3>0
a(a)xq + ax(B)xg > 0 2x, — 0.25x5 > 0

X

X* interior: ?f(?*) - 7.
X* on first frontier: ?f(?*) = —\13.
X* on second frontier: ?f(?*) = —\p35.
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Kuhn-Tucker conditions: several constraints

max  f(x) Example:
st.  ai(a)xq +a1(B)xg >0 —Xa+  x3>0
a(a)xq + ax(B)xg > 0 2x, — 0.25x5 > 0

XB

X* interior: ?f(?*) - 7.

X* on first frontier: ?f(?*) = —\3].
X* on second frontier: ?f(?*) = —\p35.
If X* is on the intersection of frontiers:

VA(R*) = M3l — A3 (with Ax > 0).

In all cases, the above condition is met.
Moreover, if Ay > 0, then a_k> . X =0.
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Applying Kuhn-Tucker conditions in our case

max  f(¢) = T(a)(¢s) + 7(B)Y(dp)
st a(a)T(a) ¢, +a1(B)7(B8) ¢ >0
a()7(a) ¢y +a2(B)7(B) b5 > 0

Condition on ?f:
(Trieliosse) __, (alorlel) o, (et
—7(8)log ¢ a1(B)7(8) a(B)7(B)
bo = eMa(a)+ha(a) (resp. B)
When A, > 0, then the point is on the corresponding frontier. For example:

a1() (@) R 4 gy (B)r()em(D ) g

9
O
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Applying Kuhn-Tucker conditions in our case

max  f(¢) = T(a)(¢s) + 7(B)Y(dp)
st a(a)T(a) ¢, +a1(B)7(B8) ¢ >0
a()7(a) ¢y +a2(B)7(B) b5 > 0

Condition on ?f:
(Trieliosse) __, (alorlel) o, (et
—7(8)log ¢ a1(B)7(8) a(B)7(B)
bo = eMa(a)+ha(a) (resp. B)
When A, > 0, then the point is on the corresponding frontier. For example:

a1() (@) R 4 gy (B)r()em(D ) g

0
a—)\lF()\)—O
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Terminological remarks

» Dual cone: cone generated by the E
> Ay Lagrange multiplier associated to constraint k.

» F(\) is the Lagrange function (or Lagrangian) of the original optimization
problem. It plays the role of objective function in the dual problem.
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Magnitude Equivalence Theorem (Ndfez 2010)
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MET

Rigorous definition of a pivot situation for subset Y of candidates:

Vk € Y,5(k) >maxS—1
Vi ¢ Y,S5(k) <max$S—2

These constraints are not linear!

We have p[pivot(Y)] = p(B), where outcome B is defined by:

Ve, Kk €Y S(k) = S(x)
{ VeeY,k'¢Y: S(k)>S(K)

These constraints are linear! Hence we can apply DMT.
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Ballot ¢ | «

MET example: pivot « vs (3 () |01
MET:
S() > S(8):  1X(w) >0
{ S5(68) > S(a): —1X() >0
S(a) >S(y):  1X(a)+ 1X(ap) —1X(y) >0
DMT:

FO) = 7(a) [P 1] g r(ag) [ — 1] +7(7) [ — 1

Minimization: A7 — A — —o0 and A3 = 0 (we cannot do better because A3 > 0).
We obtain:

plpivot(a, B)] = —7(a).
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Ballot ¢

a |aB| v
End of the example () 101]06]03
plpivot(a, B)] = —7(a) = 0.1 ,
u[pivot(a, v)] = <\/7' - \/T('y)) ~ —0.08
2
ulpivot(8.7)] = —r(a) - (w o)~ /7)) = ~0.15
= plpivot(er,7)] > ulpivot(e, B)] > plpivot(s, v)]
Type ¢ ti| t2 | t3
al B |y
Preference ranking | 8 | a | «
Yy B
Best response alab |y
= It is an equilibrium!
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Conclusion
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Large Poisson Games

v

Models with variable population generate uncertainty, even if players have
deterministic strategies.

v

Players may base their strategy on very unlikely events.

v

Poisson games = environmental equivalence = easier to handle!

v

Large Poisson games = reason in terms of magnitudes (instead of probabilities).

v

Magnitude Theorem, DMT and MET gives practical tools to compute magnitudes.
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Thank you!
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